We describe a facile strategy to synthesize hybrid nanocapsules with an oil core for hindering interactions between payloads and silica shell. Polycaprolactone/silica nanocapsules are synthesized by an interfacial sol−gel process occurring simultaneously with internal phase separation of the polymer produced by a miniemulsion-solvent evaporation technique. The localization of the polycaprolactone in the nanocapsules is depending on the ratio between polymer and silica. Formation of hybrid nanocapsules is found to significantly hinder interactions of drugs such as ibuprofen and carbamazepine with the silica surface.
Crack repairing aims at reducing crack propagation to maintain the mechanical properties and extend the lifetime of materials. Self‐healing materials require the presence of fillers containing healing agents or a material's matrix with an intrinsic healing ability. A “patch‐and‐heal” strategy is proposed here to repair small cracks on existing materials. First, nanofibrous patches encapsulating photoinitiators or catalysts are fabricated by electrospinning. Then, small cracks are covered with flexible nanofibrous patches containing a photoinitiator or a photocatalyst. After dropping monomers on the patches, a polymer film and a foam are formed rapidly after UV‐irradiation or a thermal treatment, respectively. The “patch‐and‐heal” strategy is therefore a promising concept for repairing small cracks in a rapid and convenient manner.
Photocatalytic degradation of organic pollutants is a promising way to clean wastewater. Herein, we develop and compare two processes for fabricating nanofibrous membranes with photocatalytic properties. Hybrid nanofibers are produced by colloid-electrospinning and composed of metal oxide nanoparticles on sintered SiO2 nanoparticles. The latter serves as support for the photocatalyst and preserves the structural integrity of nanofibers. Adsorption of metal salts on crosslinked polymer/SiO2 fibers followed by calcination allows for the obtention of fibers with large amounts of metal oxide. Nanofibrous membranes with supported ZnO, In2O3, or mixture of both, display photocatalytic activity upon UV irradiation. The membranes can degrade a dye and an organophosphate pesticide more effectively than membranes directly fabricated from the calcination of metal oxides.
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80–180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0).
Graphical abstract
In the article number 2001492, Papada Natsathaporn and Daniel Crespy report a new “patch‐and‐heal” strategy for repairing small cracks on materials surface. Healing nanofibrous patches containing either a photoinitiator or a catalyst are prepared by electrospinning. After impregnation of the patches with monomers, small cracks can be covered and repaired under UV irradiation or thermal treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.