Background and PurposeLiver dysfunction led hyperammonemia (HA) causes a nervous system disorder; hepatic encephalopathy (HE). In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF).MethodsALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS) and glutaminase (GA), the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats.ResultsThe ALF rats showed significantly increased levels of ammonia in the blood (HA) but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats.ConclusionALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.
Hepatic encephalopathy (HE), characterized by impaired cerebellar functions during chronic liver failure (CLF), involves N-methyl-D-aspartate receptor (NMDAR) overactivation in the brain cells. Bacopa monnieri (BM) extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B) and its downstream mediators in cerebellum of rats with chronic liver failure (CLF), induced by administration of 50 mg/kg bw thioacetamide (TAA) i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS-) apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE.
Hepatic encephalopathy (HE) represents a nervous system disorder caused due to liver dysfunction. HE is broadly classified as acute/overt and moderate-minimal HE. Since HE syndrome severely affects quality of life of the patients and it may be life threatening, it is important to develop effective therapeutic strategy against HE. Mainly ammonia neurotoxicity is considered accountable for HE. Increased level of ammonia in the brain activates glutamate-NMDA (N-methyl-D-aspartate) receptor (NMDAR) pathway leading to Ca(2+) influx, energy deficit and oxidative stress in the post synaptic neurons. Moreover, NMDAR blockage has been found to be a poor therapeutic option, as this neurotransmitter receptor plays important role in maintaining normal neurophysiology of the brain. Thus, searching new molecular players in HE pathogenesis is of current concern. There is an evolving concept about roles of the trans-membrane channels in the pathogenesis of a number of neurological complications. Pannexin1 (Panx1) is one of them and has been described to be implicated in stroke, epilepsy and ischemia. Importantly, the pathogenesis of these complications relates to some extent with NMDAR over activation. Thus, it is speculated that HE pathogenesis might also involve Panx1. Indeed, some recent observations in the animal models of HE provide support to this argument. Since opening of Panx1 channel is mostly associated with the neuronal dysfunctions, down regulation of this channel could serve as a relevant therapeutic strategy without producing any serious side effects. In the review article an attempt has been made to summarize the current information on implication of Panx1 in the brain disorders and its prospects for being examined as pharmacological target in HE pathogenesis.
Introduction: Image guided per-cutaneous trans-thoracic FNA and Tru-cut biopsy are gaining popularity since last few decades among the pulmonologists for tissue diagnosis of intra-thoracic lesions. These procedures have high diagnostic yield and are less invasive, have less complication rate in comparison to procedures like surgical lung biopsy, bronchoscopy or thoracoscopic guided lung biopsy. Aim: The aim of this prospective observational study was to determine the diagnostic yield and complications of USG guided and CT guided Fine needle aspiration and Tru cut biopsy in cases with intra- thoracic lesions. Materials and methods: In this observational study 49 patients were selected during the one-year study period after getting informed consent. CECT Thorax was done in all cases to evaluate the location, type of lesions. In 14 cases with peripheral pulmonary lesions abutting chest wall and pleural lesions both USG guided FNAC and Tru cut biopsy was done. CT guided FNAC and Tru cut biopsy was done in rest of the 35 cases. Results: Diagnostic yield of USG guided FNAC was found to be 64.3% and CT guided FNAC was 62.86%. Diagnostic yield of CT guided Tru cut biopsy in this study was 91.43% and USG guided Tru cut biopsy was 92.9%. complication rate of both USG and CT guided procedures were low. Conclusion: Both USG guided and CT guided FNAC and Tru cut biopsy are efcient diagnostic procedures for intra-thoracic lesions. Tru-cut biopsy procedure is superior to FNAC procedure for denitive diagnosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.