Prodiginines are a family of linear and cyclic oligopyrrole red-pigmented compounds. Herein we describe the in vitro antimalarial activity of 4 natural (IC50 = 1.7-8.0 nM) and 3 sets of synthetic prodiginines against Plasmodium falciparum. Set 1 compounds replaced the terminal non-alkylated pyrrole ring of natural prodiginines and had diminished activity (IC50 >2920 nM). Set 2 and set 3 prodiginines were monosubstituted or disubstituted at either the 3 or 5 position of the right hand terminal pyrrole, respectively. Potent in vitro activity (IC50 = 0.9-16.0 nM) was observed using alkyl or aryl substituents. Metacycloprodiginine and more potent synthetic analogs were evaluated in a P. yoelii murine patent infection using oral administration. Each analog reduced parasitemia by more than 90% after 25 mg/kg/day dosing, and in some cases provided a cure. The most favorable profile was 92% parasite reduction at 5 mg/kg/day, and 100% reduction at 25 mg/kg/day without any evident weight loses or clinical overt toxicity.
SUMMARY The formation of an activated cis-3-cyclohexylpropenoic acid by Plm1, the first extension module of the phoslactomycin PKS, is proposed to occur through an L-3-hydroxyacyl-intermediate as a result of ketoreduction by an A-type ketoreductase (KR). Here, we demonstrate that the KR domain of Plm1 (PlmKR1) catalyzes the formation of an L-3-hydroxyacyl product. The crystal structure of PlmKR1 revealed a well ordered active site with a nearby Trp residue characteristic of A-type KRs. Structural comparison of PlmKR1 with B-type KRs that produce D-3-hydroxyacyl intermediates revealed significant differences. The active site of cofactor-bound A-type KRs is in a catalysis-ready state, whereas cofactor-bound B-type KRs are in a pre-catalytic state. Furthermore, the closed lid loop in substrate-bound A-type KRs restricts active site access from all but one direction, which is proposed to control the stereochemistry of ketoreduction.
The marine Streptomyces sp. CNQ-617 produces two diastereomers, marineosins A and B. These are structurally related to alkyl prodiginines, but with a more complex cyclization and an unusual spiroaminal skeleton. We report the identification of the mar biosynthetic gene cluster and demonstrate production of marineosins through heterologous expression in a S. venezuelae host named JND2. The mar cluster shares the same gene organization and has high homology to the genes of the red cluster (which directs the biosynthesis of undecylprodiginine) but contains an additional gene, named marA. Replacement of marA in the JND2 strain leads to the accumulation of premarineosin, which is identical to marineosin with the exception that the middle pyrrole (Ring B) has not been reduced. The final step of the marineosin pathway is thus a MarA catalyzed reduction of this ring. Replacement of marG (a homologue of redG that directs undecylprodiginine cyclization to give streptorubin B) in the JND2 strain leads to the loss of all spiroaminal products and the accumulation of 23-hydroxyundecylprodiginine and a shunt product, 23-ketoundecylprodiginine. MarG thus catalyzes the penultimate step of the marineosin pathway catalyzing conversion of 23-hydroxyundecylprodiginine to premarineosin. The preceding steps of the biosynthetic marineosin pathway likely mirror that in the red-directed biosynthetic process, with the exception of the introduction of the hydroxyl functionality required for spiroaminal formation. This work presents the first experimentally supported scheme for biosynthesis of marineosin and provides a new biologically active molecule, premarineosin.
Facile and highly efficient synthetic routes for the synthesis of (S)- and (R)-23-hydroxyundecylprodiginines ((23S)-2, and (23R)-2), 23-ketoundecylprodiginine (3), and deuterium-labeled 23-hydroxyundecylprodiginine ([23-d]-2) have been developed. We demonstrated a novel Rieske oxygenase MarG catalyzed stereoselective bicyclization of (23S)-2 to premarineosin A (4), a key step in the tailoring process of the biosynthesis of marineosins, using a marG heterologous expression system. The synthesis of various A–C-ring functionalized prodiginines 32–41 was achieved to investigate the substrate promiscuity of MarG. The two analogues 32 and 33 exhibit antimalarial and cytotoxic activities stronger than those of the marineosin intermediate 2, against Plasmodium falciparum strains (CQS-D6, CQR-Dd2, and 7G8) and hepatocellular HepG2 cancer cell line, respectively. Feeding of 34–36 to Streptomyces venezuelae expressing marG led to production of novel premarineosins, paving a way for the production of marineosin analogues via a combinatorial synthetic/biosynthetic approach. This study presents the first example of oxidative bicyclization mediated by a Rieske oxygenase.
Synthesis and antimalarial activity of 94 novel bipyrrole tambjamines (TAs) and a library of B-ring functionalized tripyrrole prodiginines (PGs) against a panel of Plasmodium falciparum strains are described. The activity and structure-activity relationships demonstrate that the ring-C of PGs can be replaced by an alkylamine, providing for TAs with retained/enhanced potency. Furthermore, ring-B of PGs/TAs can be substituted with short alkyl substitutions at either 4-position (replacement of OMe) or 3- and 4-positions without impacting potency. Eight representative TAs and two PGs have been evaluated for antimalarial activity against multidrug-resistant P. yoelii in mice in the dose range of 5-100 mg/kg × 4 days by oral administration. The KAR425 TA offered greater efficacy than previously observed for any PG, providing 100% protection to malaria-infected mice until day 28 at doses of 25 and 50 mg/kg × 4 days, and was also curative in this model in a single oral dose (80 mg/kg). This study presents the first account of antimalarial activity in tambjamines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.