Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.