Nanoprecipitation of active pharmaceutical ingredients (APIs) to form nanocarriers (NCs) is an attractive method of producing formulations with improved stability and biological efficacies. However, nanoprecipitation techniques have not been demonstrated for highly soluble peptide therapeutics. We here present a model and technique to encapsulate highly water-soluble biologic APIs by manipulating API salt forms. APIs are ion paired with hydrophobic counterions to produce new API salts that exhibit altered solubilities suitable for nanoprecipitation processing. The governing rules of ion pair identity and processing conditions required for successful encapsulation are experimentally determined and assessed with theoretical models. Successful NC formation for the antibiotic polymyxin B requires hydrophobicity of the ion pair acid to be greater than logP = 2 for strong acids and greater than logP = 8 for weak acids. Oleic acid with a logP = 8, and pK = 5, appears to be a prime candidate as an ion pair agent since it is biocompatible and forms excellent ion pair complexes. NC formation from preformed, organic soluble ion pairs is compared to in situ ion pairs where NCs are made in a single precipitation step. NC properties, such as stability and release rates, can be tuned by varying ion pair molecular structure and ion pair-to-API molar ratios. For polymyxin B, NCs ≈ 100-200 nm in size, displaying API release rates over 3 days, were produced. This work demonstrates a new approach that enables the formation of nanoparticles from previously intractable compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.