SummaryRegulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized vacuolar compartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite.
Cisplatin, a chemotherapeutic used for the treatment of solid cancers, has nephrotoxic side effects leading to acute kidney injury (AKI). Cisplatin cannot be given to patients that have comorbidities that predispose them to an increased risk for AKI. Even without these comorbidities, 30% of patients administered cisplatin will develop kidney injury, requiring the oncologist to withhold or reduce the next dose, leading to a less effective therapeutic regimen. Although recovery can occur after one episode of cisplatin-induced AKI, longitudinal studies have indicated that multiple episodes of AKI lead to the development of chronic kidney disease, an irreversible disease with no current treatment. The standard mouse model of cisplatin-induced AKI consists of one high dose of cisplatin (>20 mg/kg) that is lethal to the animal 3 days later. This model does not accurately reflect the dosing regimen patients receive nor does it allow for the long-term study of kidney function and biology. We have developed a repeated dosing model whereby cisplatin is given once a week for 4 wk. Comparison of the repeated dosing model with the standard dosing model demonstrated that inflammatory cytokines and chemokines were induced in the repeated dosing model, but levels of cell death were lower in the repeated dosing model. The repeated dosing model had increased levels of fibrotic markers (fibronectin, transforming growth factor-β, and α-smooth muscle actin) and interstitial fibrosis. These data indicate that the repeated dosing model can be used to study the AKI to chronic kidney disease progression as well as the mechanisms of this progression.
A tetrahydroquinoline oxocarbazate (PubChem CID 23631927) was tested as an inhibitor of human cathepsin L (EC 3.4.22.15) and as an entry blocker of severe acute respiratory syndrome (SARS) coronavirus and Ebola pseudotype virus. In the cathepsin L inhibition assay, the oxocarbazate caused a time-dependent 17-fold drop in IC 50 from 6.9 nM (no preincubation) to 0.4 nM (4-h preincubation). Slowly reversible inhibition was demonstrated in a dilution assay. A transient kinetic analysis using a single-step competitive inhibition model provided rate constants of k on ϭ 153,000 M Ϫ1 s Ϫ1 and k off ϭ 4.40 ϫ 10 Ϫ5 s Ϫ1(K i ϭ 0.29 nM). The compound also displayed cathepsin L/B selectivity of Ͼ700-fold and was nontoxic to human aortic endothelial cells at 100 M. The oxocarbazate and a related thiocarbazate (PubChem CID 16725315) were tested in a SARS coronavirus (CoV) and Ebola virus-pseudotype infection assay with the oxocarbazate but not the thiocarbazate, demonstrating activity in blocking both SARS-CoV (IC 50 ϭ 273 Ϯ 49 nM) and Ebola virus (IC 50 ϭ 193 Ϯ 39 nM) entry into human embryonic kidney 293T cells. To trace the intracellular action of the inhibitors with intracellular cathepsin L, the activity-based probe biotin-Lys-C5 alkyl linker-Tyr-Leu-epoxide (DCG-04) was used to label the active site of cysteine proteases in 293T lysates. The reduction in active cathepsin L in inhibitor-treated cells correlated well with the observed potency of inhibitors observed in the virus pseudotype infection assay. Overall, the oxocarbazate CID 23631927 was a subnanomolar, slow-binding, reversible inhibitor of human cathepsin L that blocked SARS-CoV and Ebola pseudotype virus entry in human cells.
We have previously shown that all six members of the anti-apoptotic BCL2 gene family can cooperate with (myelocytomatosis oncogene) MYC in a mouse model of leukemia, but three of them are significantly less potent contributors to leukemogenicity than the other three. The protein encoded by one of these less potent genes, BCL2L10∕BCLb, was recently shown to vary dramatically in many primary human cancers by immunohistochemistry, and the protein levels were inversely correlated with survival in patients with several cancer types. We examined BCLb mRNA in a panel of human cancer cell lines and did not observe the extensive variation in mRNA that would be required to explain the vast differences in protein levels. We found that the levels of BCLb protein diminish quickly after inhibition of protein synthesis with cycloheximide, so we searched for interacting proteins that might affect posttranslational stability of BCLb. Using a variety of approaches, including immunoaffinity and mass spectrometry, we identified a protein, Ubiquilin1 (Ubqln), that specifically interacts with BCLb, and not with other anti-apoptotic BCL2-like proteins. Ubqln stabilizes BCLb protein, while also promoting monoubiquitination on multiple lysine residues and relocation to the cytosol. Furthermore, primary lung adencarcinomas have more Ubqln mRNA than normal adjacent lung tissue, and higher Ubqln mRNA levels are associated with shorter survival of lung cancer patients, suggesting that potentiation of the anti-apoptotic potential of BCLb through regulation of its stability by Ubqln may be an important factor in tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.