The development of neutralizing antibodies (nAb) against SARS-CoV-2, following infection or vaccination, is likely to be critical for the development of sufficient population immunity to drive cessation of the COVID19 pandemic. A large number of serologic tests, platforms and methodologies are being employed to determine seroprevalence in populations to select convalescent plasmas for therapeutic trials, and to guide policies about reopening. However, tests have substantial variability in sensitivity and specificity, and their ability to quantitatively predict levels of nAb is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma using commercially available SARS-CoV-2 detection tests and in-house ELISA assays and correlated serological measurements with nAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have varying degrees of accuracy in predicting nAb activity. We found the Ortho Anti-SARS-CoV-2 Total Ig and IgG high throughput serological assays (HTSAs), as well as the Abbott SARS-CoV-2 IgG assay, quantify levels of antibodies that strongly correlate with nAb assays and are consistent with gold-standard ELISA assay results. These findings provide immediate clinical relevance to serology results that can be equated to nAb activity and could serve as a valuable ‘roadmap’ to guide the choice and interpretation of serological tests for SARS-CoV-2.
Background: The development of neutralizing antibodies (NAbs) against SARS-CoV-2, following infection or vaccination, is likely to be critical for the development of sufficient population immunity to drive cessation of the COVID19 pandemic. A large number of serologic tests, platforms and methodologies are being employed to determine seroprevalence in populations to select convalescent plasmas for therapeutic trials, and to guide policies about reopening. However, these tests have substantially variable sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. Methods: We determined levels of antibodies in convalescent plasma using commercially available SARS-CoV-2 detection tests and in-house ELISA assays and correlated those measurements with neutralization activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Findings: Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have varying degrees of accuracy in predicting neutralizing activity. Nevertheless, we found particular commercially available tests are capable of accurately measuring levels of antibodies that strongly correlate with neutralization assays. Interpretation: Our findings imply that SARS-CoV-2 convalescent plasma donors have a wide range of antibody concentrations. At present it is unclear how antibody acquisition, particularly for low titer individuals, might afford future immunity to SARS-CoV-2. Further research will be required to determine the minimum threshold of antibody and neutralization activity necessary to accurately predict immunity. Correlation of clinical antibody tests with neutralization activity in this study could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.
Our data reveal that latent infection in the presence of DM or pre-DM, is characterized by diminished production of cytokines, implicated in the control of M. tuberculosis activation, allowing for a potential immunological mechanism that could account for the increased risk of active tuberculosis in latently infected individuals with DM.
Hookworm infections and tuberculosis are co-endemic in many parts of the world. It has been suggested that infection with helminth parasites could suppress the predominant Th1 (IFN-γ-mediated) response needed to control Mycobacterium tuberculosis (Mtb) infection and enhance susceptibility to infection and/or disease. To determine the role of coincident hookworm infection on responses at steady state and on Mtb – specific immune responses in latent tuberculosis (TB), we examined the cellular responses in individuals with latent TB with or without concomitant hookworm infection. By analyzing the expression of Th1, Th2 and Th17 subsets of CD4+ T cells, we were able to demonstrate that the presence of coincident hookworm infection significantly diminished both spontaneously expressed and Mtb – specific mono – and dual – functional Th1 and Th17 cells. Hookworm infection, in contrast, was associated with expanded frequencies of mono – and dual – functional Th2 cells at both steady state and upon antigen – stimulation. This differential induction of CD4+ T cell subsets was abrogated upon mitogen stimulation. In addition, coincident hookworm infection was associated with increased adaptive T regulatory (aTreg) cells but not natural regulatory T cells (nTregs) in latent TB. Finally, the CD4+ T cell cytokine expression pattern was also associated with alterations in the systemic levels of Th1 and Th2 cytokines. Thus, coincident hookworm infection exerts a profound inhibitory effect on protective Th1 and Th17 responses in latent tuberculosis and may predispose toward the development of active tuberculosis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.