A molecular epidemiological analysis was undertaken to identify lineages of Staphylococcus aureus that may be disproportionately associated with infection. Pulsed-field gel electrophoresis analysis of 405 S. aureus clinical isolates collected from various infection types and geographic locations was performed. Five distinct S. aureus lineages (SALs 1, 2, 4, 5, and 6) were identified, which accounted for 19.01, 9.14, 22.72, 10.12, and 4.69% of isolates, respectively. In addition, 85 lineages which occurred with frequencies of <2.5% were identified and were termed "sporadic." The most prevalent lineage was methicillin-resistant S. aureus (SAL 4). The second most prevalent lineage, SAL 1, was also isolated at a high frequency from the anterior nares of healthy volunteers, suggesting that its prevalence among clinical isolates may be a consequence of high carriage rates in humans. Gene-specific PCR was carried out to detect genes for a number of staphylococcal virulence traits. tst and cna were found to be significantly associated with prevalent lineages compared to sporadic lineages. When specific infection sites were examined, SAL 4 was significantly associated with respiratory tract infection, while SAL 2 was enriched among blood isolates. SAL 1 and SAL 5 were clonally related to SALs shown by others to be widespread in the clinical isolate population. We conclude from this study that at least five phylogenetic lineages of S. aureus are highly prevalent and widely distributed among clinical isolates. The traits that confer on these lineages a propensity to infect may suggest novel approaches to antistaphylococcal therapy.Staphylococcus aureus is an important opportunistic pathogen, causing a variety of hospital-and community-acquired infections. Recent reports of the National Nosocomial Infections Surveillance System ranked S. aureus as a leading cause of hospital-acquired bacteremia, pneumonia, and surgical wound infection (7). S. aureus acquires antibiotic resistance with remarkable proficiency, and strains for which vancomycin is the only effective therapeutic agent have emerged. The recently reported reduced susceptibility to vancomycin highlights the importance of understanding the molecular epidemiology of S. aureus infection and identifying new therapeutic targets (17,46).Bacterial population analyses indicate that phylogenetic lineages are not always randomly distributed within clinical isolate populations (24,(30)(31)(32)(33)(34)49). In the S. aureus species, discrete lineages or subtypes which exist due to strong selective pressures imposed by antibiotic use and due to other factors that have not been clearly defined can be identified. For example, the majority of methicillin-resistant S. aureus (MRSA) strains expanded clonally and globally upon acquisition of the 30-kb mec determinant (24). Only recently has evidence showing that horizontal transfer resulted in the spread of this determinant to other phylogenetic lineages emerged (3,24,31). A large-scale study of the genetic structure of the S. aureus ...
A molecular epidemiological analysis was undertaken to identify lineages of Staphylococcus aureus that may be disproportionately associated with infection. Pulsed-field gel electrophoresis analysis of 405 S. aureus clinical isolates collected from various infection types and geographic locations was performed. Five distinct S. aureus lineages (SALs 1, 2, 4, 5, and 6) were identified, which accounted for 19.01, 9.14, 22.72, 10.12, and 4.69% of isolates, respectively. In addition, 85 lineages which occurred with frequencies of <2.5% were identified and were termed "sporadic." The most prevalent lineage was methicillin-resistant S. aureus (SAL 4). The second most prevalent lineage, SAL 1, was also isolated at a high frequency from the anterior nares of healthy volunteers, suggesting that its prevalence among clinical isolates may be a consequence of high carriage rates in humans. Gene-specific PCR was carried out to detect genes for a number of staphylococcal virulence traits. tst and cna were found to be significantly associated with prevalent lineages compared to sporadic lineages. When specific infection sites were examined, SAL 4 was significantly associated with respiratory tract infection, while SAL 2 was enriched among blood isolates. SAL 1 and SAL 5 were clonally related to SALs shown by others to be widespread in the clinical isolate population. We conclude from this study that at least five phylogenetic lineages of S. aureus are highly prevalent and widely distributed among clinical isolates. The traits that confer on these lineages a propensity to infect may suggest novel approaches to antistaphylococcal therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.