Sodium-ion batteries (SIBs) are among the most cost-effective and environmentally benign electrical energy storage devices required to match the needs of commercialized stationary and automotive applications. Because of its excellent chemical characteristics, infinite abundance, and low cost, the SIB is an excellent technology for grid energy storage compared with others. When used as anodes, titanium compounds based on the Ti4+/Ti3+ redox couple have a potential of typically 0.5–1.0 V, which is far from the potential of dangerous sodium plating (0.0–0.1 V). This ensures the operational safety of large-scale SIBs. Low lattice strain, usually associated with Ti-based materials, is also helpful for the longevity of the cycling of SIBs. Numerous Ti-based anode materials are being developed for use in SIBs. In particular, due to adequate electrode–electrolyte interaction and rapid charge transportation, hierarchical porous (HP) Ti-based anode materials were reported as having high specific capacity, current density, and cycling stability. HPTi-based anode materials for SIBs have the potential to be used in automobiles and portable, flexible, and wearable electronic devices. This review addresses recent developments in HPTiO2-based SIBs and their preparation, properties, performance, and challenges.
Biomedical applications of zirconia nanomaterials were limited in biological systems. In this research, 8–15 nm size zirconia nanoflakes (ZrNFs) were fabricated and their nature, morphology, and biocompatibility were evaluated. The synthesis was carried out using Enicostemma littorale plant extract as an effective reducing and capping agent. Physiochemical properties of prepared ZrNFs were characterized using diverse instrumental studies such as UV‐vis spectrophotometer, Fourier‐transform infrared, powder X‐ray diffractometer, scanning electron microscope, transmission electron microscope (TEM), energy dispersive X‐ray, and cyclic voltammetry (CV). The XRD pattern confirmed the tetragonal phases of ZrNFs and the highest crystallite size of Zr0.02, Zr0.02, and Zr0.06 was 56, 50, and 44 nm, respectively. The morphology of samples was assessed using TEM. Electrophysiological effects of ZrNFs in the cellular interaction process were revealed by the slower rate of electron transfer results in CV demonstration. Biocompatibility of synthesized ZrNFs was studied on A431 human epidermoid carcinoma epithelial cells. The cell viability was increased with an increasing the concentration of nanoflakes up to 6.50–100 μg/mL. The cell viability and observed IC50 values (44.25, 36.49, and 39.62 μg/mL) reveals that the synthesized ZrNFs using E. littorale extract is found to be efficient toxic to A431 cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.