Corneal avascularity—the absence of blood vessels in the cornea—is required for optical clarity and optimal vision, and has led to the cornea being widely used for validating pro- and anti-angiogenic therapeutic strategies for many disorders1-4. But the molecular underpinnings of the avascular phenotype have until now remained obscure5-10 and are all the more remarkable given the presence in the cornea of vascular endothelial growth factor (VEGF)-A, a potent stimulator of angiogenesis, and the proximity of the cornea to vascularized tissues. Here we show that the cornea expresses soluble VEGF receptor-1 (sVEGFR-1; also known as sflt-1) and that suppression of this endogenous VEGF-A trap11 by neutralizing antibodies, RNA interference or Cre-lox-mediated gene disruption abolishes corneal avascularity in mice. The spontaneously vascularized corneas of corn1 and Pax6+/− mice12,13 and Pax6+/− patients with aniridia14 are deficient in sflt-1, and recombinant sflt-1 administration restores corneal avascularity in corn1 and Pax6+/− mice. Manatees, the only known creatures uniformly to have vascularized corneas15, do not express sflt-1, whereas the avascular corneas of dugongs, also members of the order Sirenia, elephants, the closest extant terrestrial phylogenetic relatives of manatees, and other marine mammals (dolphins and whales) contain sflt-1, indicating that it has a crucial, evolutionarily conserved role. The recognition that sflt-1 is essential for preserving the avascular ambit of the cornea can rationally guide its use as a platform for angiogenic modulators, supports its use in treating neovascular diseases, and might provide insight into the immunological privilege of the cornea.
We examined the impact of purified bacterially synthesized GST-MDA-7 (IL-24) and ionizing radiation on the proliferation and survival of nonestablished human glioblastoma multiforme (GBM) cells. Glioma cell types expressing mutated PTEN and p53 molecules, activated ERBB1VIII, overexpressing wild type ERBB1 or without receptor overexpression were selected. In MTT assays, GST-MDA-7 caused a dose-dependent reduction in the proliferation of nonestablished glioma cells; however only at higher concentrations did GST-MDA-7 reduce cell viability. The anti-proliferative and cytotoxic effects of GST-MDA-7 were enhanced by radiation in a greater than additive fashion that correlated with JNK1/2/3 activation. The reduction in cell growth and enhancement in cell killing by the combination of GST-MDA-7 and radiation were blocked by an ROS scavenger, N-acetyl cysteine (NAC), a JNK1/2/3 inhibitor SP600125, a pan-caspase inhibitor (zVAD) and by an inhibitor of caspase 9 (LEHD), but not by an inhibitor of caspase 8 (IETD). Low concentrations of either GST-MDA-7 or radiation reduced clonogenic survival, however colony formation ability was significantly further decreased when the two treatments were combined, which was also blocked by inhibition of caspase 9 function. In general agreement with activation of the intrinsic caspase pathway, cell death correlated with reduced BCL-XL expression and with increased levels of the pro-apoptotic proteins BAD and BAX. Inhibition of caspase 9 after combination treatment blunted neither JNK1/2/3 activation nor the enhanced expression of BAD and BAX, but did block caspase 3 cleavage, reduced expression of BCL-XL and inhibition of ERK1/2 activity. In contrast, incubation with NAC blocked JNK1/2/3 activation and cell killing, but not the increases in BAD and BAX expression. These findings argue that after combination treatment JNK1/2/3 activation is a primary pro-apoptotic event and loss of BCL-XL expression and ERK1/2 activity are secondary caspase-dependent processes. This data also argues that GST-MDA-7 induces two parallel pro-apoptotic pathways via ROS-dependent and -independent mechanisms. Infection of primary human astrocytes with a recombinant adenovirus to express MDA-7, Ad.mda-7, but not infection with either Ad.cmv or Ad.mda-7 SP -lacking MDA-7 secretion, resulted in the suppression of GBM cell colony formation in soft agar overlay assays, an effect that was enhanced in a greater than additive fashion by radiation. Collectively, our findings demonstrate that MDA-7 reduces proliferation and enhances the radiosensitivity of nonestablished human GBM cells in vitro, and when grown in 3 dimensions, and that sensitization occurs independently of basal EGFR/ERK1/2/AKT activity or the functions of PTEN and p53.
Adenovirus type 5 (Ad5) is one of the most promising vectors for gene therapy applications. Genetic engineering of Ad5 capsid proteins has been employed to redirect vector tropism, to enhance infectivity, or to circumvent preexisting host immunity. As the most abundant capsid protein, hexon modification is particularly attractive. However, genetic modification of hexon often results in failure of rescuing viable viruses. Since hypervariable regions (HVRs) are nonconserved among hexons of different serotypes, we investigated whether the HVRs could be used for genetic modification of hexon by incorporating oligonucleotides encoding six histidine residues (His 6 ) into different HVRs in the Ad5 genome. The modified viruses were successfully rescued, and the yields of viral production were similar to that of unmodified Ad5. A thermostability assay suggested the modified viruses were stable. The His 6 epitopes were expressed in all modified hexon proteins as assessed by Western blotting assay, although the intensity of the reactive bands varied. In addition, we examined the binding activity of anti-His tag antibody to the intact virions with the enzyme-linked immunosorbent assay and found the His 6 epitopes incorporated in HVR2 and HVR5 could bind to anti-His tag antibody. This suggested the His 6 epitopes in HVR2 and HVR5 were exposed on virion surfaces. Finally, we examined the infectivities of the modified Ad vectors. The His 6 epitopes did not affect the native infectivity of Ad5 vectors. In addition, the His 6 epitopes did not appear to mediate His 6 -dependent viral infection, as assessed in two His 6 artificial receptor systems. Our study provided valuable information for studies involving hexon modification.
It has been demonstrated that survivin, a novel member of the inhibitor of apoptosis (IAP) protein family, is expressed in human cancers but is undetectable in normal differentiated tissues. We employed a recombinant adenoviral vector (reAdGL3BSurvivin) in which a tumor-specific survivin promoter and a luciferase reporter gene were inserted into the E1-deleted region of adenovirus vector. Luciferase activity was measured in both multiple tumor cell lines and two primary melanoma cells infected with reAdGL3BSurvivin. Human fibroblast and mammary epithelial cell lines were used as negative controls. A reAdGL3CMV, containing the CMV promoter and luciferase gene, was used as a positive control to normalize the luciferase activity generated by the survivin promoter. Our data revealed that the survivin promoter showed high activity in both established tumor cell lines and the primary melanoma cells. In contrast, the in vivo studies indicated that the activities of survivin promoter were extremely low in the major mouse organs. The survivin promoter appears to be a promising tumor-specific promoter exhibiting a ''tumor on'' and ''liver off'' profile, and therefore, it may prove to be a good candidate for transcriptional targeting of cancer gene therapy in a wide variety of tumors.
Purpose: Current animal tumor models are inadequate for the evaluation of toxicity and efficacy of conditionally replicative adenoviruses. A novel model system is needed that will provide insight into the anticipated therapeutic index of conditionally replicative adenoviruses preclinically. We endeavored to show a novel model system, which involves ex vivo evaluation of conditionally replicative adenovirus toxicity and therapeutic efficacy in thin, precision-cut slices of human primary tumor and liver.Experimental Design: The Krumdieck thin-slice tissue culture system was used to obtain and culture slices of tumor xenografts of ovarian cancer cell lines, human primary ovarian tumors, and human liver. We determined the viability of slices in culture over a period of 36 to 48 hours by ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxphenyl-2-(4-sulfophenyl)-2H-tetrazolium, inner salt)]) (MTS) assay. In vitro Hey cells, slices of Hey xenografts, and human ovarian tumor or human liver slices were infected with 500vp/cell of either replication competent wild-type adenovirus (Ad5/3wt), conditionally replicative adenovirus (Ad5/3cox-2), or the replication deficient adenovirus (Ad5/3luc1). At 12-, 24-, and 36-hour intervals, the replication of adenoviruses in these slices was determined by quantitative reverse transcription-PCR of adenoviral E4 copy number.Results: Primary tumor slices were able to maintain viability for up to 48 hours after infection with nonreplicative virus (Ad5luc1). Infection of Hey xenografts with Ad5/ 3cox-2 showed replication consistent with that seen in Hey cells infected in an in vitro setting. Primary tumor slices showed replication of both Ad5/3wt and Ad5/3cox over a 36-hour time period. Human liver slices showed replication of Ad5/3wt but a relative reduction in replication of Ad5/ 3cox-2 indicative of conditional replication "liver off" phenotype, thus predicting lower toxicity. Conclusions:The thin-slice model system represents a stringent method of ex vivo evaluation of novel replicative adenoviral vectors and allows assessment of human liver replication relative to human tumor replication. This is the first study to incorporate this system for evaluation of therapeutic efficacy and replicative specificity of conditionally replicative adenoviruses. Also, the study is the first to provide a valid means for preclinical assay of potential conditionally replicative adenovirus-based hepatotoxicities, thus providing a powerful tool to determine therapeutic index for clinical translation of conditionally replicative adenoviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.