Gene therapy represents a promising treatment alternative for patients with malignant gliomas. Nevertheless, in the setting of these highly infiltrative tumors, transgene delivery remains a challenge. Indeed, viral vehicles tested in clinical trials often target only those tumor cells that are adjacent to the injection site. In this study, we examined the feasibility of using human mesenchymal stem cells (hMSC) to deliver a replication-competent oncolytic adenovirus (CRAd) in a model of intracranial malignant glioma. To do so, CRAds with a chimeric 5/3 fiber or RGD backbone with or without CXCR4 promoter driving E1A were examined with respect to replication and toxicity in hMSC, human astrocytes, and the human glioma cell line U87MG by quantitative polymerase chain reaction and membrane integrity assay. CRAd delivery by virus-loaded hMSC was then evaluated in vitro and in an in vivo model of mice bearing intracranial U87MG xenografts. Our results show that hMSC are effectively infected by CRAds that use the CXCR4 promoter. CRAd-CXCR4-RGD had the highest replication, followed by CRAd-CXCR4 -5/3, in hMSC, with comparable levels of toxicity. In U87MG tumor cells, CRAd-CXCR4 -5/3 showed the highest replication and toxicity. Virus-loaded hMSC effectively migrated in vitro and released CRAds that infected U87MG glioma cells. When injected away from the tumor site in vivo, hMSC migrated to the tumor and delivered 46-fold more viral copies than injection of CRAd-CXCR4 -5/3 alone. Taken together, these results indicate that hMSC migrate and deliver CRAd to distant glioma cells. This delivery strategy should be explored further, as it could improve the outcome of oncolytic virotherapy for glioma. STEM CELLS 2008;26:831-841 Disclosure of potential conflicts of interest is found at the end of this article.
Injected hMSCs transduced with CRAds suppressed the growth of pulmonary metastases, presumably through viral amplification in the hMSCs. Thus, hMSCs may be an effective platform for the targeted delivery of CRAds to distant cancer sites such as metastatic breast cancer.
The poor prognosis of patients with malignant gliomas necessitates the development of novel therapies. Virotherapy, using genetically engineered adenovectors that selectively replicate in and kill neoplastic cells, represents one such strategy. In this study, we examined several oncolytic vectors with modified transcriptional and transductional control of viral replication. First, we incorporated the survivin promoter (S) to drive E1A gene expression. We then modified the adenovirus serotype 5 (Ad5) fiber protein via genetic knob switching or incorporation of peptide ligands to target the following glioma-associated receptors: the Ad3 attachment protein, or CD46, alpha(v) beta(3)/alpha(v)beta(5) integrins, or heparan sulfate proteoglycans. The three conditionally replicative adenoviruses, CRAd-S-5/3, CRAd-S-RGD, and CRAd-S-pk7, were then examined in vitro with respect to transduction efficiency and tissue specificity. The most promising virus was then tested in vivo for evidence of tumor growth inhibition. CRAd-S-pk7 provided the highest level of viral replication and tumor oncolysis in glioma cell lines. At the same time, we observed minimal viral replication and toxicity in normal human brain. Injection of CRAd-S-pk7 inhibited xenograft tumor growth by more than 300% (p < 0.001). Sixty-seven percent of treated mice with intracranial tumors were long-term survivors (>110 days; p < 0.005). Analysis of tumor tissue indicated increased adenoviral infectivity, decreased mitotic activity, and enhanced tumor apoptosis. These findings demonstrate the effectiveness of CRAd-S-pk7 and provide the rationale for further development of this novel oncolytic virus for glioma gene therapy.
The purpose of this study was to determine the effect of transplanted human mesenchymal stem cells (hMSCs) on wound healing. In this model, full-thickness cutaneous wounds were created by incision in the skin of adult New Zealand white rabbits and treated by transplanted human MSCs into the wounds. Wound healing was evaluated by histologic analysis and tensiometry over time. A total of 15 New Zealand white rabbits with 10 wounds per animal were examined in this study. Animals were treated with human MSCs and euthanized at 3, 7, 14, 21 and 80 days after manipulation. The hMSCs were labeled with a fluorescent dye (CM-DiI), suspended in PBS, and used to treat full-thickness incisional wounds in rabbit skin. Tensiometry and histology was used to characterize the wound-healing rate of the incisional wounds. These results showed that transplanted hMSCs significantly inhibited scar formation and increased the tensile strength of the wounds. Importantly, MSCs from genetically unrelated donors did not appear to induce an immunologic response. In conclusion, human mesenchymal stem cell therapy is a viable approach to significantly affect the course of normal cutaneous wound healing and significantly increase the tensile strength.
It has been demonstrated that survivin, a novel member of the inhibitor of apoptosis (IAP) protein family, is expressed in human cancers but is undetectable in normal differentiated tissues. We employed a recombinant adenoviral vector (reAdGL3BSurvivin) in which a tumor-specific survivin promoter and a luciferase reporter gene were inserted into the E1-deleted region of adenovirus vector. Luciferase activity was measured in both multiple tumor cell lines and two primary melanoma cells infected with reAdGL3BSurvivin. Human fibroblast and mammary epithelial cell lines were used as negative controls. A reAdGL3CMV, containing the CMV promoter and luciferase gene, was used as a positive control to normalize the luciferase activity generated by the survivin promoter. Our data revealed that the survivin promoter showed high activity in both established tumor cell lines and the primary melanoma cells. In contrast, the in vivo studies indicated that the activities of survivin promoter were extremely low in the major mouse organs. The survivin promoter appears to be a promising tumor-specific promoter exhibiting a ''tumor on'' and ''liver off'' profile, and therefore, it may prove to be a good candidate for transcriptional targeting of cancer gene therapy in a wide variety of tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.