Natural and genetically modified oncolytic viruses have been systematically tested as anticancer therapeutics. Among this group, conditionally replicative adenoviruses have been developed for a broad range of tumors with a rapid transition to clinical settings. Unfortunately, clinical trials have shown limited antitumor efficacy partly due to insufficient viral delivery to tumor sites. We investigated the possibility of using mesenchymal progenitor cells (MPC) as virus carriers based on the documented tumorhoming abilities of this cell population. We confirmed preferential tumor homing of MPCs in an animal model of ovarian carcinoma and evaluated the capacity of MPCs to be loaded with oncolytic adenoviruses. We showed that MPCs were efficiently infected with an adenovirus genetically modified for coxsackie and adenovirus receptorindependent infection (Ad5/3), which replicated in the cell carriers. MPCs loaded with Ad5/3 caused total cell killing when cocultured with a cancer cell line. In an animal model of ovarian cancer, MPC-based delivery of the Ad5/3 increased the survival of tumor-bearing mice compared with direct viral injection. Further, tumor imaging confirmed a decrease in tumor burden in animals treated with oncolytic virus delivered by MPC carriers compared with the direct injection of the adenovirus. These data show that MPCs can serve as intermediate carriers for replicative adenoviruses and suggest that the natural homing properties of specific cell types can be used for targeted delivery of these virions. [Mol Cancer Ther 2006;5(3):755 -66]
Hyperthermia can be produced by near-infrared laser irradiation of gold nanoparticles present in tumors and thus induce tumor cell killing via a bystander effect. To be clinically relevant, however, several problems still need to be resolved. In particular, selective delivery and physical targeting of gold nanoparticles to tumor cells are necessary to improve therapeutic selectivity. Considerable progress has been made with respect to retargeting adenoviral vectors for cancer gene therapy. We therefore hypothesized that covalent coupling of gold nanoparticles to retargeted adenoviral vectors would allow selective delivery of the nanoparticles to tumor cells, thus feasibilizing hyperthermia and gene therapy as a combinatorial therapeutic approach. For this, sulfo-N-hydroxysuccinimide labeled gold nanoparticles were reacted to adenoviral vectors encoding a luciferase reporter gene driven by the cytomegalovirus promoter (AdCMVLuc). We herein demonstrate that covalent coupling could be achieved, while retaining virus infectivity and ability to retarget tumor-associated antigens. These results indicate the possibility of using adenoviral vectors as carriers for gold nanoparticles.
Injected hMSCs transduced with CRAds suppressed the growth of pulmonary metastases, presumably through viral amplification in the hMSCs. Thus, hMSCs may be an effective platform for the targeted delivery of CRAds to distant cancer sites such as metastatic breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.