Our modification in the formulation of CPDA or SAGM is effective in arresting the dramatic decrease in the level of 2,3-DPG that occurs during storage of WB and RBCs in unmodified solutions.
The isoprenoid pathway was assessed in 15 patients with chronic fatigue syndrome. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance had any correlation with these disease states. The isoprenoid metabolites--digoxin, dolichol, and ubiquinone--RBC membrane Na+-K+ ATPase activity, serum magnesium and tyrosine/tryptophan catabolic patterns were assessed. The free-radical metabolism, glycoconjugate metabolism, and RBC membrane composition was also assessed. Membrane Na+-K+ ATPase activity and serum magnesium levels were decreased while HMG CoA reductase activity and serum digoxin levels were increased in myalgic encephalomyelitis (ME). There were increased levels of tryptophan catabolites--nicotine, strychnine, quinolinic acid, and serotonin--and decreased levels of tyrosine catabolites--dopamine, noradrenaline, and morphine in ME. There was an increase in dolichol levels, carbohydrate residues of glycoproteins, glycolipids, total/individual GAG fractions, and lysosomal enzymes in ME. Reduced levels of ubiquinone, reduced glutathione, and free-radical scavenging enzymes, as well as increased lipid peroxidation products and nitric oxide, were noticed in ME. The biochemical patterns in ME correlated with those obtained in right hemi spheric chemical dominance. The role of hypothalamic digoxin and neurotransmitter induced immune activation, altered glycoconjugate metabolism, and resultant defective viral antigen presentation, NMDA excitotoxicity and cognitive dysfunction, and mitochondrial dysfunction related myalgia in the pathogenesis of ME is stressed. ME occurs in individuals with right hemispheric chemical dominance.
The isoprenoid pathway and its metabolites--digoxin, dolichol, and ubiquinone--were assessed in autism. The isoprenoid pathway and digoxin status was also studied for comparison in individuals of differing hemispheric dominance to determine the role of cerebral dominance in the genesis of autism. There was an upregulation of the isoprenoid pathway as evidenced by elevated HMG CoA reductase activity in autism. Digoxin, an endogenous Na+-K+ ATPase inhibitor secreted by the hypothalamus, was found to be elevated and RBC membrane Na+-K+ ATPase activity was found to be reduced in autism. Membrane Na+-K+ ATPase inhibition can result in increased intracellular Ca2+ and reduced magnesium levels. Hypothalamic digoxin can modulate conscious and subliminal perception and its dysfunction may lead to autism. Digoxin can also preferentially upregulate tryptophan transport over tyrosine resulting in increased levels of depolarizing tryptophan catabolites--serotonin, quinolinic acid (NMDA agonist), strychnine (blocks glycinergic inhibitory transmission), and nicotine (promotes dopamine release) and decreased levels of hyperpolarizing tyrosine catabolites--dopamine, noradrenaline, and morphine--contributing to membrane Na+-K+ ATPase inhibition. Increased nicotine levels can produce increased dopaminergic transmission in the presence of low dopamine levels. NMDA excitotoxicity could result from hypomagnesemia induced by membrane Na+-K+ ATPase inhibition and quinolinic acid, an NMDA agonist acting on the NMDA receptor. Hypomagnesemia and increased dolichol level can affect glycoconjugate metabolism and membranogenesis leading on to disordered synaptic connectivity in the limbic allocortex and defective presentation of viral antigens and neuronal antigens contributing to autoimmunity and viral persistence important in the pathogenesis. Membrane Na+-K+ ATPase inhibition can produce immune activation, a component of autoimmunity. Mitochondrial dysfunction consequent to altered calcium/magnesium ratios and reduced ubiquinone levels can result in increased free radical generation and reduced free radical scavenging and defective apoptosis leading to abnormal synaptogenesis. Autism can thus be considered a syndrome of hypothalamic digoxin hypersecretion consequent to an upregulated isoprenoid pathway. The biochemical patterns including hyperdigoxinemia observed in autism correlated with those obtained in right hemispheric chemical dominance. Right hemispheric chemical dominance is a predisposing factor for autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.