a b s t r a c tIn this study, low cost ceramic supports were prepared from kaolin via phase inversion technique with two kaolin particle sizes, which are 0.04-0.6 m (denoted as type A) and 10-15 m (denoted as type B), at different kaolin contents ranging from 14 to 39 wt.%, sintered at 1200 • C. The effect of kaolin particle sizes as well as kaolin contents on membrane structure, pore size distribution, porosity, mechanical strength, surface roughness and gas permeation of the support were investigated. The support was prepared using kaolin type A induced asymmetric structure by combining macroporous voids and sponge-like structure in the support with pore size of 0.38 m and 1.05 m, respectively, and exhibited ideal porosity (27.7%), great mechanical strength (98.9 MPa) and excellent gas permeation. Preliminary study shows that the kaolin ceramic support in this work is potential to gas separation application at lower cost.
Abstract.The adsorption of lead ion from palm oil mill effluent produced directly from the mill was investigated using mixed adsorbents that were used to prepare the composite. Experiments were carried out under predetermined conditions of pH, shaking speed, contact time and particle size. Equilibrium study was carried out to determine the adsorption capacity of the mixed media. The reduction of the lead ion was effective on the adsorbent materials. The Temkin and Freundlich models were applied to describe the adsorption pattern on the mixed media. The experimental data fitted well to the Temkin isotherm with a correlation coefficient of 1, this was used to indicate the level of interaction of the adsorbent-adsorbate and also the energy utilized in the adsorption process. The hydrophobic behaviour of the activated coconutshell and cow bone carbons was observed for average contact angle of 105ᵒ and 95ᵒ for the coconut shell and cow bone respectively. The influence of the hydrophobic materials in the mixed media and the zeolite assisted in the ion exchange and in the adsorption of the heavy metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.