Time series data is a collection of chronological observations which are generated by several domains such as medical and financial fields. Over the years, different tasks such as classification, forecasting and clustering have been proposed to analyze this type of data. Time series data has been also used to study the effect of interventions overtime. Moreover, in many fields of science, learning the causal structure of dynamic systems and time series data is considered an interesting task which plays an important role in scientific discoveries. Estimating the effect of an intervention and identifying the causal relations from the data can be performed via causal inference. Existing surveys on time series discuss traditional tasks such as classification and forecasting or explain the details of the approaches proposed to solve a specific task. In this paper, we focus on two causal inference tasks, i.e., treatment effect estimation and causal discovery for time series data and provide a comprehensive review of the approaches in each task. Furthermore, we curate a list of commonly used evaluation metrics and datasets for each task and provide an in-depth insight. These metrics and datasets can serve as benchmark for research in the field.
Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them.On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of causal disentanglement which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.