Analysis of plasma and serum provides valuable information on the amounts of polar phenols’ circulating after ingestion. In the present study, protein precipitation (PPT), liquid–liquid extraction (LLE), solid phase extraction (SPE), enzymatic hydrolysis and their combinations were meticulously evaluated for the extraction of a variety of polar phenolic moieties from plasma and serum. The recovery values of the above methods were compared; satisfactory recoveries (>60%) were attained for most analytes. Polar phenol aglycones undergo degradation with enzymatic hydrolysis; however, their extended phase II metabolism makes enzymatic hydrolysis a mandated process for their analysis in such biofluids. Hence, enzymatic hydrolysis followed by LLE was used for the identification of polar phenols in rats’ serum, after the long-term oral consumption of Corinthian Currant. Corinthian Currant is a Greek dried vine product rich in bioactive polar phenolics. Flavonoids and phenolic acids, detected as aglycones, ranged from 0.57 ± 0.08 to 181.66 ± 48.95 and 3.45 ± 1.20 to 897.81 ± 173.96 ng/mL, respectively. The majority of polar phenolics were present as phase II metabolites, representing their fasting state in the blood stream. This is the first study evaluating the presence of polar phenolics in the serum of rats following a long-term diet supplemented with Corinthian Currant as a whole food.
The present study aimed at investigating the possible benefits of a dietary intervention with Corinthian currants, a rich source of phenolic compounds, on type 1 diabetes (T1D) using the animal model of the streptozotocin-(STZ)-induced diabetic rat. Male Wistar rats were randomly assigned into four groups: control animals, which received a control diet (CD) or a diet supplemented with 10% w/w Corinthian currants (CCD), and diabetic animals, which received a control diet (DCD) or a currant diet (DCCD) for 4 weeks. Plasma biochemical parameters, insulin, polar phenolic compounds, and inflammatory factors were determined. Microbiota populations in tissue and intestinal fluid of the caecum, as well as fecal microbiota populations and short-chain fatty acids (SCFAs), were measured. Fecal microbiota was further analyzed by 16S rRNA sequencing. The results of the study showed that a Corinthian currant-supplemented diet restored serum polar phenolic compounds and decreased interleukin-1b (IL-1b) (p < 0.05) both in control and diabetic animals. Increased caecal lactobacilli counts (p < 0.05) and maintenance of enterococci levels within normal range were observed in the intestinal fluid of the DCCD group (p < 0.05 compared to DCD). Higher acetic acid levels were detected in the feces of diabetic rats that received the currant diet compared to the animals that received the control diet (p < 0.05). Corinthian currant could serve as a beneficial dietary component in the condition of T1D based on the results coming from the animal model of the STZ-induced T1D rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.