BackgroundAs commercially available activity trackers are being utilized in clinical trials, the research community remains uncertain about reliability of the trackers, particularly in studies that involve walking aids and low-intensity activities. While these trackers have been tested for reliability during walking and running activities, there has been limited research on validating them during low-intensity activities and walking with assistive tools.ObjectiveThe aim of this study was to (1) determine the accuracy of 3 Fitbit devices (ie, Zip, One, and Flex) at different wearing positions (ie, pants pocket, chest, and wrist) during walking at 3 different speeds, 2.5, 5, and 8 km/h, performed by healthy adults on a treadmill; (2) determine the accuracy of the mentioned trackers worn at different sites during activities of daily living; and (3) examine whether intensity of physical activity (PA) impacts the choice of optimal wearing site of the tracker.MethodsWe recruited 15 healthy young adults to perform 6 PAs while wearing 3 Fitbit devices (ie, Zip, One, and Flex) on their chest, pants pocket, and wrist. The activities include walking at 2.5, 5, and 8 km/h, pushing a shopping cart, walking with aid of a walker, and eating while sitting. We compared the number of steps counted by each tracker with gold standard numbers. We performed multiple statistical analyses to compute descriptive statistics (ie, ANOVA test), intraclass correlation coefficient (ICC), mean absolute error rate, and correlation by comparing the tracker-recorded data with that of the gold standard.ResultsAll the 3 trackers demonstrated good-to-excellent (ICC>0.75) correlation with the gold standard step counts during treadmill experiments. The correlation was poor (ICC<0.60), and the error rate was significantly higher in walker experiment compared to other activities. There was no significant difference between the trackers and the gold standard in the shopping cart experiment. The wrist worn tracker, Flex, counted several steps when eating (P<.01). The chest tracker was identified as the most promising site to capture steps in more intense activities, while the wrist was the optimal wearing site in less intense activities.ConclusionsThis feasibility study focused on 6 PAs and demonstrated that Fitbit trackers were most accurate when walking on a treadmill and least accurate during walking with a walking aid and for low-intensity activities. This may suggest excluding participants with assistive devices from studies that focus on PA interventions using commercially available trackers. This study also indicates that the wearing site of the tracker is an important factor impacting the accuracy performance. A larger scale study with a more diverse population, various activity tracker vendors, and a larger activity set are warranted to generalize our results.
Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.