Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy older and frail older subjects to determine the effect of age and frailty on the metabolic signature of skeletal muscle tissue. In addition, the effects of prolonged whole-body resistance-type exercise training on the muscle metabolome of older subjects were examined. The baseline metabolome was measured in muscle biopsies collected from 30 young, 66 healthy older subjects, and 43 frail older subjects. Follow-up samples from frail older (24 samples) and healthy older subjects (38 samples) were collected after 6 months of prolonged resistance-type exercise training. Young subjects were included as a reference group. Primary differences in skeletal muscle metabolite levels between young and healthy older subjects were related to mitochondrial function, muscle fiber type, and tissue turnover. Similar differences were observed when comparing frail older subjects with healthy older subjects at baseline. Prolonged resistance-type exercise training resulted in an adaptive response of amino acid metabolism, especially reflected in branched chain amino acids and genes related to tissue remodeling. The effect of exercise training on branched-chain amino acid-derived acylcarnitines in older subjects points to a downward shift in branched-chain amino acid catabolism upon training. We observed only modest correlations between muscle and plasma metabolite levels, which pleads against the use of plasma metabolites as a direct read-out of muscle metabolism and stresses the need for direct assessment of metabolites in muscle tissue biopsies.
BackgroundThe skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre‐)frail older adults. Additionally, we examine the effect of resistance‐type exercise training on the muscle transcriptome in healthy older subjects and (pre‐)frail older adults.MethodsBaseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow‐up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance‐type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week.ResultsAt baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism ,and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = −0.73).ConclusionsOur data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance‐type exercise training. Some age‐related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance‐type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re‐innervation in ageing muscle.
Our present findings indicate that the risk for weight regain is related to expression changes of distinct sets of stress-related genes during the first 4 weeks after returning to energy balance, and during the DI. Further research is required to investigate the mechanistic significance of these findings and find targets for preventing weight regain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.