The performance of liquid gallium and water in the double layer microchannel has been analysed using three-dimensional conjugate heat transfer analysis. The effect of flow rate on the counter and parallel arrangement of each fluid is studied for three different lengths. Furthermore, cooling capability of liquid gallium and water is compared at the same length with flow rate and pumping power as governing parameters. The performance of fluid was judged on the basis of maximum temperature attained and minimal temperature variations at the heated region. Interesting results have been found showing the effect of specific heat on the type of arrangement for liquid gallium with similar observation for water for low Reynolds number and relatively longer length. Among liquid gallium and water, above certain pumping power use of liquid gallium is found to be favourable for a shorter length of the double layer microchannel. Furthermore, the range of flow rate and pumping power showing superior performance with water was found to increase with the length.
With increasing demand for higher computational speed and emerging micro-systems, thermal management poses serious challenge for efficient cooling. Among these liquid cooling using microchannels has gained significant attention and has been extended to its double layer configuration which eliminates the drawback of significant temperature variations in single layer system. The double layer configuration has been primarily analyzed for rectangular ducts. In this study the performance of trapezoidal shape double layer microchannel heat sink is investigated and compared to rectangular double layer heat sink of same flow area. Four different possible configurations are analyzed and comparative study among respective counter and parallel configuration is performed followed by comparison among each configuration. The performance is evaluated on the basis of maximum temperature attained at the heated surface as well as minimum temperature variations. Finally the best performing configuration is compared with double layer rectangular heat sink. Analysis shows that among various trapezoidal configurations, the one with larger side face to face is most suitable. Further comparative study with rectangular system shows that performance of trapezoidal double layer heat sink is superior in both aspects, i.e. minimum thermal resistance as well as minimum temperature variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.