Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.
Imaging dose in radiation therapy has traditionally been ignored due to its low magnitude and frequency in comparison to therapeutic dose used to treat patients. The advent of modern, volumetric, imaging modalities, often as an integral part of linear accelerators, has facilitated the implementation of image-guided radiation therapy (IGRT), which is often accomplished by daily imaging of patients. Daily imaging results in additional dose delivered to patient that warrants new attention be given to imaging dose. This review summarizes the imaging dose delivered to patients as the result of cone beam computed tomography (CBCT) imaging performed in radiation therapy using current methods and equipment. This review also summarizes methods to calculate the imaging dose, including the use of Monte Carlo (MC) and treatment planning systems (TPS). Peripheral dose from CBCT imaging, dose reduction methods, the use of effective dose in describing imaging dose, and the measurement of CT dose index (CTDI) in CBCT systems are also reviewed.
The modeling of the beam produces reasonable results and the dose calculation comparisons indicate the potential for computing kilovoltage CBCT doses using a treatment planning system. Further improvements in the dose calculation algorithm are necessary, especially for dose calculations in and near the bone.
Accurately determining the dose from low energy x rays is becoming increasingly important. This is especially so because of high doses in interventional radiology procedures and also because of the desire to model accurately the dose around low energy brachytherapy sources. Various methods to estimate the dose from specific procedures are available but they only give a general idea of the true dose to various organs. The use of sophisticated three-dimensional (3D) dose deposition algorithms designed originally for radiation therapy treatment planning can be extended to lower photon energy regions. The majority of modern 3D treatment planning systems use a variation of the convolution algorithm to calculate dose distributions. This could be extended into the diagnostic energy range with the availability of lower energy deposition kernels ( < 100 keV). We have used version four of the Electron Gamma Shower (EGS4) system of Monte Carlo codes to generate photon energy deposition kernels in the energy range of 20-110 keV and have implemented them in a commercial 3D treatment planning system (Pinnacle, ADAC Laboratories, Milpitas, CA). The kernels were generated using the "SCASPH" EGS4 user code by selecting the appropriate transport parameters suitable for the relative low energy of the incident photons. The planning system was subsequently used to model diagnostic quality beams and to calculate depth dose and cross profile curves. Comparisons of the calculated curves have been made with measurements performed in a homogeneous water phantom.
Radiotherapy is the cornerstone of palliative treatment for primary bone cancer in animals and metastatic bone cancer in humans. However, the mechanism(s) responsible for pain relief after irradiation is unknown. To identify the mechanism through which radiation treatment decreases bone cancer pain, the effect of radiation on mice with painful bone cancer was studied. Analysis of the effects of a 20-Gy treatment on localized sites of painful bone cancers was performed through assessments of animal behavior, radiographs and histological analysis. The findings indicated that radiation treatment reduced bone pain and supported reduced cancer burden and reduced osteolysis as mechanisms through which radiation reduces bone cancer pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.