A new, highly selective, bond functionalization strategy, achieved via relay of two transition metal catalysts and the use of traceless acetal directing groups, has been employed to provide facile formation of C–Si bonds and concomitant functionalization of a silicon group in a single vessel. Specifically, this approach involves the relay of Ir-catalyzed hydrosilylation of inexpensive and readily available phenyl acetates, exploiting disubstituted silyl synthons to afford silyl acetals and Rh-catalyzed ortho-C–H silylation to provide dioxasilines. A subsequent nucleophilic addition to silicon removes the acetal directing groups and directly provides unmasked phenol products and, thus, useful functional groups at silicon achieved in a single vessel. This traceless acetal directing group strategy for catalytic ortho-C–H silylation of phenols was also successfully applied to preparation of multisubstituted arenes. Remarkably, a new formal α-chloroacetyl directing group has been developed that allows catalytic reductive C–H silylation of sterically hindered phenols. In particular, this new method permits access to highly versatile and nicely differentiated 1,2,3-trisubstituted arenes that are difficult to access by other catalytic routes. In addition, the resulting dioxasilines can serve as chromatographically stable halosilane equivalents, which allow not only removal of acetal directing groups but also introduce useful functional groups leading to silicon-bridged biaryls. We demonstrated that this catalytic C–H bond silylation strategy has powerful synthetic potential by creating direct applications of dioxasilines to other important transformations, examples of which include aryne chemistry, Au-catalyzed direct arylation, sequential orthogonal cross-couplings, and late-stage silylation of phenolic bioactive molecules and BINOL scaffolds.
Because of the importance of hydrogen atom transfer (HAT) in biology and
chemistry, there is increased interest in new strategies to perform HAT in a
sustainable manner. Here, we describe a sustainable, net redox-neutral HAT
process involving hydrosilanes and alkali metal Lewis base catalysts —
eliminating the use of transition metal catalysts — and report an
associated mechanism concerning Lewis base-catalysed, complexation-induced HAT
(LBCI-HAT). The catalytic LBCI-HAT is capable of accessing both branch-specific
hydrosilylation and polymerization of vinylarenes in a highly selective fashion,
depending on the Lewis base catalyst used. In this process, earth abundant,
alkali metal Lewis base catalyst plays a dual role. It first serves as a HAT
initiator and subsequently functions as a silyl radical stabilizing group, which
is critical to highly selective cross-radical coupling. EPR study identified a
potassiated paramagnetic species and multistate density function theory revealed
a high HAT character, yet multiconfigurational nature in the transition state of
the reaction.
This work describes the design and application of a single-pot, reductive arene C-H silanolization of aromatic esters for synthesis of ortho-formyl arylsilanols. This strategy involves a sequence of two transition metal (Ir and Rh)-catalyzed reactions for reductive arene ortho-silylation directed by hydridosilyl acetals and hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.