Following the tsunamis occurred in Japan (2011) and Indian Ocean (2004), investigating interaction between coastal structures and tsunamis became necessary. Although several attempts have been made to estimate the tsunami forces acting on the coastal structures, there still remain inconsistencies among the published design guidelines. This research includes an experimental study to investigate the interaction between a tsunami surge and a coastal structure. The tsunami surge was generated using a novel dam-break system, capable of generating higher tsunami surges than the previous simulations. The relations between surge velocity, surge depth, and surge-induced pressure on the structure were presented. In the surge-induced pressure–time histories, there were three identified force components, namely, run-up, impulsive and quasi-steady hydrodynamics. Furthermore, this research presents a comparison made between the experimental results and existing tsunami guidelines. The ratio of impulsive force to hydrodynamic force was found around 2.4 for each tsunami surge. The hydrodynamic forces were found to be higher with respect to those determined using the ‘Federal Emergency Management Agency’ FEMA P646 guidelines, whereas they were approximately in agreement with those obtained by FEMA 55. Moreover, the results showed that the ‘Structural Design Method of Building for Tsunami Resistance’ overestimates the impulsive force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.