Human activity discovery aims to distinguish the activities performed by humans, without any prior information of what defines each activity. Most methods presented in human activity recognition are supervised, where there are labeled inputs to train the system. In reality, it is difficult to label data because of its huge volume and the variety of activities performed by humans. In this paper, a novel unsupervised approach is proposed to perform human activity discovery in 3D skeleton sequences. First, important frames are selected based on kinetic energy. Next, the displacement of joints, set of statistical, angles, and orientation features are extracted to represent the activities information. Since not all extracted features have useful information, the dimension of features is reduced using PCA. Most human activity discovery proposed are not fully unsupervised. They use pre-segmented videos before categorizing activities. To deal with this, we used the fragmented sliding time window method to segment the time series of activities with some overlapping. Then, activities are discovered by a novel hybrid particle swarm optimization with a Gaussian mutation algorithm to avoid getting stuck in the local optimum. Finally, k-means is applied to the outcome centroids to overcome the slow rate of PSO. Experiments on three datasets have been presented and the results show the proposed method has superior perfor- * Corresponding author.
Despite many advances in human activity recognition, most existing works are conducted with supervision. Supervised methods rely on labeled training data. However, obtaining labeled data is difficult, costly, and time-consuming. In this paper, we introduce an automatic multi-objective particle swarm optimization clustering based on Gaussian mutation and game theory (MOPGMGT) to tackle the problem of human activity discovery fully unsupervised and map the multi-objective clustering problem to game theory to get the best optimal solution. The proposed algorithm does not require any prior knowledge of the number of activities to be discovered and can find the optimal number. Multi-objective optimization problems typically cannot have a single optimal solution. To solve this issue, Nash Equilibrium (NE) is applied to the pareto front to choose the best solution. NE does not just look for the best solution, but tries to optimize the final solution by considering the effect of choosing each of the solutions as the best solution on the other solutions and one with the best impact is chosen. Moreover, a Gaussian mutation is applied on the pareto front to avoid premature convergence. Experiments on five challenging datasets demonstrate that the proposed approach is the most efficient to achieve better accuracy in human activity discovery and also can determine the optimal number of clusters.
Choosing a committee with independent members in social networks can be named as a problem in group selection and independence in the committee is considered as the main criterion of this selection. Independence is calculated based on the social distance between group members. Although there are many solutions to solve the problem of group selection in social networks, such as selection of the target set or community detection, just one solution has been proposed to choose committee members based on their independence as a measure of group performance. In this paper, a new adaptive hybrid algorithm is proposed to select the best committee members to maximize the independence of the committees. This algorithm is a combination of particle swarm optimization (PSO) algorithm with two local search algorithms. The goal of this work is to combine exploration and exploitation to improve the efficiency of the proposed algorithm and obtain the optimal solution. Additionally, to combine local search algorithms with particle swarm optimization, an effective selection mechanism is used to select a suitable local search algorithm to combine with particle swarm optimization during the search process. The results of experimental simulation are compared with the well-known and successful metaheuristic algorithms. This comparison shows that the proposed method improves the group independence by at least 21%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.