In this study, we aimed to modify chitosan (CS) as a novel compatible bio-based nanofiller for improving the compatibility including the thermal and mechanical properties of poly(lactic acid) (PLA). The modification of CS with poly(ethylene glycol) methyl ether methacrylate (PEGMA) was done by radiation-induced graft copolymerization. The effects of the dose rate, irradiation dose, and PEGMA concentration on the degree of grating (DG) were investigated. The chemical structure, packing structure, thermal stability, particle morphology, and size of the PEGMA-graft-chitosan nanoparticles (PEGMA-graft-CSNPs) were characterized by fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The compatibility of the PEGMA-graft-CSNP/PLA blends was also assessed by field emission scanning electron microscopy. The PEGMAgraft-CSNPs exhibited a spherical shape with the DG and particle sizes in the ranges of 3-145% and 35-104 nm, respectively. The PEGMA-graft-CSNPs showed compatible with PLA because of the grafted PEGMA segment. A model case study of the PEGMA-graft-CSNP/PLA blend demonstrated the improvement not only the compatibility but also thermal stability flexibility, and ductility of PLA.
An approach for the synthesis of copper nanoparticles ( CuNPs) embedded in poly ( vinylpyrrolidone) ( PVP) composite materials is proposed using a simultaneous irradiation process. The parameters, i.e., copper sulfate ( CuSO4) precursor, VP and PVP concentrations were optimized for synthesis of CuNPs under irradiation. Crosslinking of PVP system was analyzed by gel fraction and swelling degree using gravimetric measurement. Functionality, chemical composition and crystallinity of the CuNPs-PVP composite materials were characterized by FT-IR, SEM-EDS, XRD. Morphology of the CuNPs-PVP composite materials was observed using SEM. Light blue color of Cu2+ precursor in liquid polymer/monomer system changed to dark brown color of Cu in solid form. Stable CuNPs with the particle diameters ranging from ca.100 to 500 nm was successfully synthesized in the PVP solid materials. A simple and effective process for the preparation of the CuNPs-PVP composite materials serves as a new generation of process and functional nanomaterials for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.