Amelogenin and ameloblastin are 2 extracellular matrix proteins that are essential for the proper development of enamel. We recently reported that amelogenin and ameloblastin colocalized during the secretory stage of enamel formation when nucleation of enamel crystallites occurs. Direct interactions between the 2 proteins have been also demonstrated in our in vitro studies. Here, we explore interactions between their fragments during enamel maturation. We applied in vivo immunofluorescence imaging, quantitative colocalization analysis, and a new FRET (fluorescence resonance energy transfer) technique to demonstrate ameloblastin and amelogenin interaction in the maturing mouse enamel. Using immunochemical analysis of protein samples extracted from 8-d-old (P8) first molars from mice as a model for maturation-stage enamel, we identified the ~17-kDa ameloblastin (Ambn-N) and the TRAP (tyrosine-rich amelogenin peptide) fragments. We used Ambn-N18 and Ambn-M300 antibodies raised against the N-terminal and C-terminal segments of ameloblastin, as well as Amel-FL and Amel-C19 antibodies against full-length recombinant mouse amelogenin (rM179) and C-terminal amelogenin, respectively. In transverse sections, co-localization images of N-terminal fragments of amelogenin and ameloblastin around the prism boundary revealed the "fish net" pattern of the enamel matrix. Using in vivo FRET microscopy, we further demonstrated spatial interactions between amelogenin and ameloblastin N-terminal fragments. In the maturing mouse enamel, the association of these residual protein fragments created a discontinuity between enamel rods, which we suggest is important for support and maintenance of enamel rods and eventual contribution to unique enamel mechanical properties. We present data that support cooperative functions of enamel matrix proteins in mediating the structural hierarchy of enamel and that contribute to our efforts to design and develop enamel biomimetic material.
Epithelially-derived ameloblasts secrete extracellular matrix proteins including amelogenin, enamelin, and ameloblastin. Complex intermolecular interactions among these proteins are believed to be important in controlling enamel formation. Here we provide in vitro and in vivo evidence of co-assembly and co-localization of ameloblastin with amelogenin using both biophysical and immunohistochemical methods. We performed co-localization studies using immunofluorescence confocal microscopy with paraffin-embedded tissue sections from mandibular molars of mice at 1, 5, and 8 days of age. Commercially-available ameloblastin antibody (M300) against mouse ameloblastin residues 107–407 and an antibody against full-length recombinant mouse (rM179) amelogenin were used. Ameloblastin-M300 clearly reacted along the secretory face of ameloblasts from days 1–8. Quantitative co-localization was analyzed (QCA) in several configurations by choosing appropriate regions of interest (ROIs). Analysis of ROIs along the secretory face of ameloblasts revealed that at day 1, very high percentages of both the ameloblastin and amelogenin co-localized. At day 8 along the ameloblast cells the percentage of co-localization remained high for the ameloblastin whereas co-localization percentage was reduced for amelogenin. Analysis of the entire thickness on day 8 revealed no significant co-localization of amelogenin and ameloblastin. With the progress of amelogenesis and ameloblastin degradation, there was a segregation of ameloblastin and co-localization with the C-terminal region decreased. CD spectra indicated that structural changes in ameloblastin occurred upon addition of amelogenin. Our data suggest that amelogenin-ameloblastin complexes may be the functional entities at the early stage of enamel mineralization.
Background: Anionic lipids compete for electrostatic interaction in membrane proteins. Results: Despite competition, anionic lipids stabilize the integrin ␣IIb3 transmembrane complex. Conclusion: Stabilizing anionic lipid-protein interactions exist and supersede destabilizing effects. Significance: Anionic lipid-mediated stabilization of membrane proteins may be of a general nature.
Misfolded species of the 140-residue protein α-synuclein (αS) are implicated in the demise of dopaminergic neurons resulting in fatal neurodegeneration. The intrinsically unstructured protein binds curved synaptic vesicle membranes in helical conformations but misfolds into amyloid fibrils via β-sheet interactions. Breaks in helical αS conformation may offer a pathway to transition from helical to sheet conformation. Here, we explore the evolution of broken αS helix conformations formed in complex with SDS and SLAS micelles by molecular dynamics simulations. The population distribution of experimentally observed αS conformations is related to the spatial concentration of intrinsic micelle shape perturbations. For the success of micelle-induced αS folding, we posit the length of the first helical segment formed, which controls micelle ellipticity, to be a key determinant. The degree of micelle curvature relates to the arrangement and segmental motions of helical secondary structure elements. A criterion for assessing the reproduction of such intermediate timescale protein dynamics is introduced by comparing the sampling of experimental and simulated spin label distributions. Finally, at the sites of breaks in the elongated, marginally stable αS helix, vulnerability to forming a transient, intramolecular β-sheet is identified. Upon subsequent intermolecular β-sheet pairing, pathological αS amyloid formation from initial helical conformation is thus achievable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.