Abstract:The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new OPEN ACCESSPolymers 2014, 6 2248 aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.
In the present study, chemical-physical properties of nanofibers isolated from rubberwood (Hevea brasiliensis) and empty fruit bunches (EFB) of oil palm (Elaeis guineensis) were analyzed by microscopic, spectroscopic, thermal and X-ray diffraction methods. The isolation was achieved using chemo-mechanical processes. Microscopy study showed that the diameters of the nanofibers isolated from the EFB ranged from 5 to 40 nm while those of the nanofibers isolated from rubberwood had a wider range (10-90 nm). Fourier transform infrared spectroscopy study demonstrated that almost all the lignin and most of the hemicellulose were removed during the chemical treatments. X-ray diffraction analysis revealed that the crystallinity of the studied nanofibers increased after the chemo-mechanical isolation process. The results of thermogravimetric analysis showed that the nanofibers isolated from both sources had higher thermal stability than those of the bleached pulp and untreated fibers.
Abstract:In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. Among the many possible bio resources, biologically active products from fungi and yeast represent excellent scaffolds for this purpose. Since fungi and yeast are very effective secretors of extracellular enzymes and number of species grow fast and therefore culturing and keeping them in the laboratory are very simple. They are able to produce metal nanoparticles and nanostructure via reducing enzyme intracellularly or extracellularly. The focus of this review is the application of fungi and yeast in the green synthesis of inorganic nanoparticles. Meanwhile the domain of biosynthesized nanoparticles is somewhat novel; the innovative uses in nano medicine in different areas including the delivery of drug, cancer therapy, antibacterial, biosensors, and MRI and medical imaging are reviewed. The proposed signaling pathways of nanoparticles induced apoptosis in cancerous cells and anti-angiogenesis effects also are reviewed. In this article, we provide a short summary of the present study universally on the
The aim of this study was to isolate cellulose nanofibers from kenaf (Hibiscus cannabinus) stem using chemo-mechanical treatments. The fiber purification method included pulping and bleaching processes whereas the mechanical treatments employed to isolate kenaf nanofibers were grinding and high pressure homogenizing. Kenaf nanofibers were found to have diameters in the range of 15-80 nm while most nanofibers have diameters within the range 15-25 nm. Fourier transform infrared spectroscopy (FTIR) showed that the chemical treatments removed lignin and most of the hemicelluloses from the fibers. The thermal characteristics of the fibers were analyzed using the technique of thermogravimetric analysis (TGA) which demonstrated that these characteristics were enhanced noticeably both for the bleached pulp and nanofibers. On the other hand, the X-ray analysis indicated that both chemical and mechanical treatments can improve the crystallinity of fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.