This paper is dealing about Switched Capacitor Multi-Level Inverter (SCMLI) circuit which is controlled by triangular multicarrier Sinewave Pulse Width Modulation (SPWM) technique. The proposed SCMLI is powered from asymmetric DC source configuration to obtain multi-level output voltage by applying switching pulse to the main circuit from control circuit for switching operation. Fourteen switches and four capacitors are employing to do the proposed inversion operation in an effective way. Switching capacitors can perform boost operation to enhance voltage from the source level to the required level. Input DC from the asymmetric sources is converted to AC voltage for the application of consumers. This proposed conversion system is applicable for mainly in industrial and renewable energy-based energy conversion system because it can carry high output voltages. This proposed method gives about more efficiency. Also reduces switching losses in lower value, low conduction losses and capacitor ripple losses. The simulation model is analyzed in MATLAB/SIMULINK platform and the same validated in hardware results. The developed SCMLI structure is witness over other topologies for the power inversion process in the multi-level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.