A review of the literature on the flammability and decomposition of Poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK) is presented. This paper provides an overview of the flammability of PEEK and its decomposition mechanisms.Based on this literature, mechanisms have been suggested which attempt to explain the products formed at each stage of PEEK decomposition and indicate the intermediates which should be formed at each of these stages.
Conventional thermally durable materials such as metals are being replaced with heat resistant engineering polymers and their composites in applications where burn-through resistance and structural integrity after exposure to fire are required. Poly aryl ether ether ketone (PEEK) is one such engineering polymer. Little work has been published with regards to the flammability of PEEK and its filled composites. The current study aims to assess the flammability and fire behaviour of PEEK and its composites using thermogravimetric analysis, pyrolysis combustion flow calorimetry, limiting oxygen index, a vertical flame resistance test, and fire (cone) calorimetry.
The relationship between physical properties and fire performance as measured in the cone calorimeter is not well understood. A number of studies have identified relationships between the physical and chemical properties of polymeric materials and their gasification behaviour which can be determined through numerical pyrolysis models. ThermaKin, a one-dimensional pyrolysis model, has recently been employed to predict the burning behaviour in fire calorimetry experiments. The range of thermal, chemical and optical properties of various polymers have been utilised to simulate the processes occurring within a polymer exposed to a uniform heat flux, such as in a cone calorimeter. ThermaKin uses these material properties to predict the mass flux history in a cone calorimeter. Multiplying the mass flux history by the heat of combustion of the fuel gases gives the HRR history and these have been calculated for cone calorimeter experiments at 50 kW m -2 incident heat flux for the lowest, average and highest values of physical parameters exhibited by common polymers. In contrast with actual experiments in fire retardancy, where several parameters change on incorporation of an additive, this study allows for the effect of each parameter to be seen in isolation. The parameters used in this study are grouped into physical properties (density, heat capacity and thermal conductivity), optical properties (absorption and reflectivity), and chemical properties (heat of decomposition, kinetic parameter and heat of combustion). The study shows how the thermal decomposition kinetic parameters effect the surface burning (pyrolysis) temperature and resulting heat release rate history, as well as the relative importance of other properties directly related to the chemical composition. It also illustrates the effect of thermal inertia (the product of density, heat capacity and thermal conductivity) and of the samples' ability to absorb radiant heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.