Implications of structural connections within and between brain regions for their functional counterpart are timely points of discussion. White matter microstructural organization and functional activity can be assessed in unison. At first glance, however, the corresponding findings appear variable, both in the healthy brain and in numerous neuro-pathologies. To identify consistent associations between structural and functional connectivity and possible impacts for the clinic, we reviewed the literature of combined recordings of electro-encephalography (EEG) and diffusion-based magnetic resonance imaging (MRI). It appears that the strength of event-related EEG activity increases with increased integrity of structural connectivity, while latency drops. This agrees with a simple mechanistic perspective: the nature of microstructural white matter influences the transfer of activity. The EEG, however, is often assessed for its spectral content. Spectral power shows associations with structural connectivity that can be negative or positive often dependent on the frequencies under study. Functional connectivity shows even more variations, which are difficult to rank. This might be caused by the diversity of paradigms being investigated, from sleep and resting state to cognitive and motor tasks, from healthy participants to patients. More challenging, though, is the potential dependency of findings on the kind of analysis applied. While this does not diminish the principal capacity of EEG and diffusion-based MRI co-registration, it highlights the urgency to standardize especially EEG analysis.
We studied the relationship between age‐related differences in inter‐ and intra‐hemispheric structural and functional connectivity in the bilateral motor network. Our focus was on the correlation between connectivity and declined motor performance in older adults. Structural and functional connectivity were estimated using diffusion weighted imaging and resting‐state electro‐encephalography, respectively. A total of 48 young and older healthy participants were measured. In addition, motor performances were assessed using bimanual coordination tasks. To pre‐select regions‐of‐interest (ROIs), a neural model was adopted that accounts for intra‐hemispheric functional connectivity between dorsal premotor area (PMd) and primary motor cortex (M1) and inter‐hemispheric connections between left and right M1 (M1L and M1R). Functional connectivity was determined via the weighted phase‐lag index (wPLI) in the source‐reconstructed beta activity during rest. We quantified structural connectivity using kurtosis anisotropy (KA) values of tracts derived from diffusion tensor‐based fiber tractography between the aforementioned areas. In the group of older adults, wPLI values between M1L–M1R were negatively associated with the quality of bimanual motor performance. The additional association between wPLI values of PMdL––M1L and PMdR–M1L supports that functional connectivity with the left hemisphere mediated (bimanual) motor control in older adults. The correlational analysis between the selected structural and functional connections revealed a strong association between wPLI values in the left intra‐hemispheric PMdL–M1L pathway and KA values in M1L–M1R and PMdR–M1L pathways in the group of older adults. This suggests that weaker structural connections in older adults correlate with stronger functional connectivity and, hence, poorer motor performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.