The COVID-19 pandemic has caused severe health, economic, and societal impacts across the globe. Although highly efficacious vaccines were developed at an unprecedented rate, the heterogeneity in vaccinated populations has reduced the ability to achieve herd immunity. Specifically, as of Spring 2022, the 0–4 year-old population is still unable to be vaccinated and vaccination rates across 5-11 year olds are low. Additionally, vaccine hesitancy for older populations has further stalled efforts to reach herd immunity thresholds. This heterogeneous vaccine landscape increases the challenge of anticipating disease spread in a population. We developed an age-structured Susceptible-Infectious-Recovered-type mathematical model to investigate the impacts of unvaccinated subpopulations on herd immunity. The model considers two types of undervaccination - age-related and behavior-related - by incorporating four age groups based on available FDA-approved vaccines. The model accounts for two different types of vaccines, mRNA (e.g., Pfizer, Moderna) and vector (e.g., Johnson and Johnson), as well as their effectiveness. Our goal is to analyze different scenarios to quantify which subpopulations and vaccine characteristics (e.g., rate or efficacy) most impact infection levels in the United States, using the state of New Mexico as an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.