Geoscientists have always considered the Neyriz region, located along the Zagros Suture Zone, an important area of interest because of the outcrops of Neotethys ophiolitic rocks. We carried out a modal analysis of the Cenozoic sandstones and geochemistry of the detrital Cr-spinels at Neyriz region in order to determine their provenance and tectonic evolution in the proximal part of Zagros Basin. Our data shows a clear change in provenance from the Late Cretaceous onwards. As from the Late Cretaceous to Eocene, lithic grains are mostly chert and serpentinite; and higher Cr# values of the detrital Cr-spinel compositions indicate that they originate from the fore-arc peridotites and deposited in an accretionary prism setting during this period. From the Late Oligocene to the Miocene periods, volcaniclastic and carbonate lithic grains show an increasing trend, and in the Miocene, metasedimentary lithic grains appear in the sediments. Ophiolite obduction caused a narrow trough sub-basin to be formed parallel to the general trend of the Zagros Orogeny between the Arabian and Iranian plates in Oligocene. From the Miocene onwards, the axial metamorphic complex belt was uplifted in the upper plate. Therefore, the collision along the Zagros Suture Zone must have occurred in the Late Oligocene.
Mélanges are formed by sedimentary, tectonic and diapiric processes and are generally found in collisional belts. The Zagros Orogeny provides an intriguing geological laboratory for the study of mélange-forming processes during the progressive tectonic evolution of the Neotethys Ocean. Different types of tectonic and sedimentary mélanges occur in specific structural positions within the Zagros orogenic belt in the Neyriz Region (Iran). Based on their block-in-matrix fabrics, and tectonostratigraphic positions, we differentiated 14 different mélange types, which mark different episodes of the tectonic evolution of the Neyriz Region from the Cretaceous subduction to the Miocene collision. The Cretaceous subduction stage is recorded by volcanic-sedimentary mélanges (Mv). Sedimentary mélanges characterized by megabreccia from the Cretaceous limestone (Ms1) and Eocene polymictic megabreccia (Ms2) represent epi-nappe mélanges formed during the Palaeocene-Eocene in wedge-top basins. The ophiolite emplacement in the Oligocene resulted in local extensional tectonics in the upper part of the ophiolitic nappe, and deposition of a polymictic megabreccia (Ms3, Ms4). As the final production of the Neotethys Ocean closure and the Eurasian-Arabian collision, the sedimentary mélanges characterized by different types of chaotic rock units (Ms5, Ms6, Ms7 and Ms8 facies) were developed in front of the Cretaceous-Eocene nappes due to growth of the orogenic wedge in the Miocene. Our findings indicate that the recognition and distinction of different types of mélange may provide additional constraints for a better understanding of the tectono-sedimentary evolution of the Neotethyan region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.