A three-dimensional multiscale modeling framework is developed to analyze the failure procedure of radially aligned zinc oxide (ZnO) enhanced single fiber composites (SFC) under tensile loading to understand the interfacial improvement between the fiber and the matrix. The model introduces four levels in the computational domain. The nanoscale analysis calculates the size-dependent material properties of ZnO nanowires. The interaction between ZnO nanowires and the matrix is simulated using a properly designed representative volume element at the microscale. At the mesoscale, the interface between the carbon fiber and the surrounding area is modeled using the cohesive zone approach. A combination of ABAQUS Finite element software and the failure criteria modeled in UMAT user subroutine is implemented to simulate the single fiber fragmentation test (SFFT) at the macroscale. The numerical results indicate that the interfacial shear strength of SFC can be improved up to 99% after growing ZnO nanowires on the fiber. The effect of ZnO nanowires geometries on the interfacial shear strength of the enhanced SFC is also investigated. Experimental ZnO nanowires enhanced SFFTs are performed on the fabricated samples to validate the results of the developed multiscale model. A good agreement between the numerical and the experimental results was observed.
The interfacial properties of ZnO nanowire (NW)/ carbon fiber-reinforced epoxy composites are investigated using molecular dynamics (MD) simulations. An atomistic representative volume element (RVE) is developed in which a single ZnO NW is aligned on carbon fiber and embedded in the cross-linked epoxy. Effects of ZnO NWs on the fiber−matrix adhesion are studied by evaluating the fiber and the enhanced matrix interaction. The tractionseparation behavior in both sliding mode (shear separation) and opening mode (normal separation) is evaluated. The cohesive parameters, including the peak traction and adhesion energy, are calculated in each mode. Different numbers of cross-linked epoxy units in the system are studied and validated. The interfacial properties of the hybrid system are compared with the simulated bare RVE containing fiber and epoxy. MD results showed that the interfacial strength is increased from 485 MPa to 1066 MPa with the ZnO NWs. The adhesion energy in both opening and sliding modes is significantly improved by growing ZnO NWs on the carbon fibers. In addition, the hybrid system shows more rate-independent behavior compared with the bare system in the opening mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.