Municipal solid waste (MSW) directly impacts community health and environmental degradation; therefore, the management of MSW is crucial. Medical waste is a specific type of MSW which is generally divided into two categories: infectious and non-infectious. Wastes generated by coronavirus disease 2019 (COVID-19) are classified among infectious medical wastes; moreover, these wastes are hazardous because they threaten the environment and living organisms if they are not appropriately managed. This paper develops a bi-objective mixed-integer linear programming model for medical waste management during the COVID-19 outbreak. The proposed model minimizes the total costs and risks, simultaneously, of the population’s exposure to pollution. This paper considers some realistic assumptions for the first time, including location-routing problem, time window-based green vehicle routing problem, vehicles scheduling, vehicles failure, split delivery, population risk, and load-dependent fuel consumption to manage both infectious and non-infectious medical waste. We apply a fuzzy goal programming approach for solving the proposed bi-objective model, and the efficiency of the proposed model and solution approach is assessed using data related to 13 nodes of medical waste production in a location west of Tehran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.