Fabricating graphite electrode corrected with nanofiber by electrospinning as a considerable procedure for utilization in the fluid materials, milk, and syrup for detection of T2 mycotoxin is a significant technique. The modern biosensor was fabricated at normal degrees of room and utilized via buffer Britton–Robinson (B‐R) in pH = 5 to refine the chemico‐mechanical specifications. The electrochemical manner of the modified surface was surveyed using the scanning electron microscopy (SEM), cyclic voltammetry (CV), square wave voltammetry (SQWV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The corrected electrode displayed a linear reply to T2 toxin in two distinct concentration ranges of 30–100 nM with correlation coefficients of 0.99. The greatest signals in the square wave spectrums for the B‐R buffer created on the uttermost signals of the obtained streams were pH = 5 and 0.5 M of KNO3 for T2 toxin. The modified electrode has a big signal, broad dynamic concentration and high sensitivity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.