ZnO-Immobilized mesoporous hollow silica spheres (ZnO/xMHSS; x ¼ 15, 30, 50 molar ratio of Zn/Si) were synthesized and examined as photocatalysts toward the degradation of sodium dodecylbenzenesulfonate (SDBS). The hollow structures of MHSS and ZnO-immobilized MHSS composite were evidenced by transmission electron microscopy analysis. X-ray diffraction results confirmed the presence of ZnO and a mesoporous structure in the synthesized materials. N 2 adsorption-desorption analysis also depicted the formation of a mesoporous structure and the increased surface area for the ZnO/xMHSS materials. Fourier transform infrared spectroscopy analysis revealed the formation of Si-O-Zn bonds due to interaction between ZnO and MHSS. The photocatalytic testing results indicated that all the ZnO/xMHSS materials showed improved efficiencies of 10-21 % toward the photodegradation of SDBS when compared with bare ZnO. Among the prepared materials, ZnO/15MHSS was the best photocatalyst, which photodegraded 68 % SDBS after 1 h reaction. The kinetic study demonstrated that the photocatalytic reaction followed the second-order model.
Highly crystalline ZnO/mesoporous hollow silica sphere (MHSS) composites have been successfully synthesized through an impregnation method at 323K without applying calcination. Three composites of different Zn/Si molar ratios of 1:2, 1:1, and 2:1 were prepared. X-Ray diffraction patterns confirmed the presence of highly crystalline ZnO in the materials. A layer of ZnO was formed on the MHSS as evidenced by field emission scanning electron microscopy analysis. Transmission electron microscopy analysis verified the mesoporous structure in ZnO/MHSS composites. N2 adsorption–desorption analysis indicated a type IV isotherm for 1ZnO/2MHSS and 1ZnO/1MHSS samples, confirming the presence of mesopores in the ZnO layer. It has been demonstrated that all the ZnO/MHSS composites exhibit a high photocatalytic activity towards sodium dodecylbenzenesulfonate degradation compared with bare ZnO under UV irradiation. A kinetic study showed that the photodegradation followed a second order model. Among the prepared composites, 1ZnO/1MHSS recorded the highest reaction rate of 6.03×10−3mM−1min−1 which is attributed to a high crystallinity and the monodispersity of a high amount of ZnO on MHSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.