Background
Spalt-like transcription factor 4 (SALL4) and aldehyde dehydrogenase1 family member A1 (ALDH1A1) expressing cells have been characterized as possessing stem cell-like properties known as cancer stem cell marker in serous ovarian carcinoma (SOC).
Methods
The association between SALL4 and ALDH1A1 was observed based on literature review and bioinformatics tools. Therefore, this study aimed to investigate the association between the co-expression of SALL4/ALDH1A1 proteins and clinicopathological parameters and their prognostic value in SOC patients using immunohistochemical staining on tissue microarrays (TMAs). Furthermore, benign tumors and normal tissue samples were compared with the expression of the tumor tissue samples.
Results
Increased co-expression of SALL4/ALDH1A1 was found to be significantly associated with the advanced FIGO stage (P = 0.047), and distant metastasis (P = 0.028). The results of Kaplan–Meier survival analysis indicated significant differences between disease- specific survival (DSS; P = 0.034) or progression-free survival (PFS; P = 0.018) and the patients with high and low co-expression of SALL4/ALDH1A1, respectively. Furthermore, high level co-expression of SALL4/ALDH1A1 was a significant predictor of worse DSS and PFS in the univariate analysis. The data also indicated that the co-expression of SALL4/ALDH1A1 was an independent prognostic factor affecting PFS. Moreover, the co-expression of SALL4/ALDH1A1 added prognostic values of DSS in patients with SOC who had grade III versus grade I in multivariate analysis.
Conclusions
Our data demonstrated that high co-expression of SALL4/ALDH1A1 was found to be significantly associated with tumor aggressiveness and worse DSS or PFS in SOC patients. Therefore, co-expression of SALL4/ALDH1A1 may serve as a potential prognostic biomarker of cancer progression in these cases.
Glioblastoma (grade IV glioma) is the most aggressive histopathological subtype of glial tumors with inordinate microvascular proliferation as one of its key pathological features. Extensive angiogenesis in the tumor microenvironment supplies oxygen and nutrients to tumoral cells; retains their survival under hypoxic conditions; and induces an immunosuppressive microenvironment. Anti-angiogenesis therapy for high-grade gliomas has long been studied as an adjuvant immunotherapy strategy to overcome tumor growth. In the current review, we discussed the underlying molecular mechanisms contributing to glioblastoma aberrant angiogenesis. Further, we discussed clinical applications of monoclonal antibodies, tyrosine kinase inhibitors, and aptamers as three major subgroups of anti-angiogenic immunotherapeutics and their limitations. Moreover, we reviewed clinical and preclinical applications of small interfering RNAs (siRNAs) as the next-generation anti-angiogenic therapeutics and summarized their potential advantages and limitations. siRNAs may serve as next-generation anti-angiogenic therapeutics for glioma. Additionally, application of nanoparticles as a delivery vehicle could increase their selectivity and lower their off-target effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.