Observation of thermally activated delayed fluorescence (TADF) in conjugated systems redefined the molecular design approach to realize highly efficient organic light emitting diodes (OLEDs) in the early 2010s. Enabling effective reverse intersystem crossing (RISC) by minimizing the difference between singlet and triplet excited state energies (ΔE ST ) is proven to be a widely applicable and fruitful approach, which results in remarkable external quantum efficiencies (EQE). The efficacy of RISC in these systems is mainly dictated by the first-order mixing coefficient (λ), which is proportional to spin-orbit coupling (H SO ) and inversely proportional to ΔE ST . While minimizing ΔE ST has been the focus of the OLED community over the last decade, the effect of H SO in these systems is largely overlooked. Here, molecular systems with increased H SO are designed and synthesized by substituting selected heteroatoms of high-performance TADF materials with heavy-atom selenium. A new series of multicolor TADF materials with remarkable EQEs are achieved. One of these materials, SeDF-B, results in pure blue emission with EQEs approaching 20%. Additionally, flexible graphene-based electrodes are developed for OLEDs and revealed to have similar performance as standard indium tin oxide (ITO) in most cases. These devices are the first report of TADF based OLEDs that utilize graphene-based anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.