The present findings indicate that rs6265 is associated with METH dependence in the Thai population, with the GG genotype greater in METH-dependent subjects but reducing the emergence of METH-dependent psychosis.
These results demonstrate a specific association between elevated PVALB methylation and METH-induced psychosis. This finding may contribute to the GABAergic deficits associated with METH dependence.
Methamphetamine (METH) is an addictive psychostimulant drug commonly leading to schizophrenia-like psychotic symptoms. Disturbances in glutamatergic neurotransmission have been proposed as neurobiological mechanisms and the α-amino-3 hydroxy-5 methyl-4 isoxazole propionic acid (AMPA) glutamate receptor has been implicated in these processes. Moreover, genetic variants in GRIAs, genes encoding AMPA receptor subunits, have been observed in association with both drug dependence and psychosis. We hypothesized that variation of GRIA genes may be associated with METH dependence and METH-induced psychosis. Genotyping of GRIA1 rs1428920, GRIA2 rs3813296, GRIA3 rs3761554, rs502434 and rs989638 was performed in 102 male Thai controls and 100 METH-dependent subjects (53 with METH-dependent psychosis). We observed no evidence of association with METH dependence and METH-dependent psychosis in the GRIA1 and GRIA2 polymorphisms, nor with single polymorphisms rs3761554 and rs989638 in GRIA3. An association of GRIA3 rs502434 was identified with both METH dependence and METH-dependent psychosis, although this did not withstand correction for multiple testing. Combining the analysis of this site with the previously-demonstrated association with BDNF rs6265 resulted in a highly significant effect. These preliminary findings indicate that genetic variability in GRIA3 may interact with a functional BDNF polymorphism to provide a strong risk factor for the development of METH dependence in the Thai population.
Aim: We investigated DNA methylation of BDNF in methamphetamine (METH) dependence in humans and an animal model. Materials & methods: BDNF methylation at exon IV was determined by pyrosequencing of blood DNA from METH-dependent and control subjects, and from rat brain following an escalating dose of METH or vehicle. Bdnf expression was determined in rat brain. Results: BDNF methylation was increased in human METH dependence, greatest in subjects with psychosis and in prefrontal cortex of METH-administered rats; rat hippocampus showed reduced Bdnf methylation and increased gene expression. Conclusion: BDNF methylation is abnormal in human METH dependence, especially METH-dependent psychosis, and in METH-administered rats. This may influence BDNF expression and contribute to the neurotoxic effects of METH exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.