This paper is concerned with the fatigue behaviour of welded joints by the notch stress approach. The actual welded shape is complex and 3-dimensional that may influence greatly the fatigue strength. The purpose of the paper is to present a way of modelling the actual weld bead shape by using a 3-D Laser scanner for experimental models of steel plates with longitudinal fillet welds, and applying its results to a proper notch stress method for the fatigue strength. The present approach to assess the fatigue strength is quite promising with application to a variety of welded joints and effects of weld profiling to fatigue strength.※Keywords: Notch fatigue analysis(노치피로강도), Bead shape modelling(비드형상모델링),
Type A LPG Carrier is the ship using the low temperature independent cargo tank separate from the hull, which has various support structures for laying independent tanks on the hull. In this paper, the direct strength analysis for the support structures has been performed through the direct load analysis, load transfer, stress analysis and strength assessment. Also, a rational modeling method of support structures has been proposed to obtain the dynamic load between the hull and the separate tank.
The notch effects on the fatigue strength of welded joints are both stress concentration and fatigue strength reduction. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. In this paper, well-known notch stress approaches -critical distance method, area method and fictitious rounding method are presented for the fatigue strength of cruciform joints. The estimated results of the present methods are applied to the experiments performed in this study and reported in the references. The results of the application show that the fatigue-life scatterness of the experimental data expressed in the nominal stress is significantly reduced by introducing the effective fatigue stress of the present study. ※Keywords: Notch stress analysis(노치응력해석), Fatigue effective notch stress(유효노치피로응 력), Fatigue strength of cruciform joints(십자형 용접 연결부 피로 강도)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.