Facial expression recognition (FER) is a topic attracting significant research in both psychology and machine learning with a wide range of applications. Despite a wealth of research on human FER and considerable progress in computational FER made possible by deep neural networks (DNNs), comparatively less work has been done on comparing the degree to which DNNs may be comparable to human performance. In this work, we compared the recognition performance and attention patterns of humans and machines during a two-alternative forced-choice FER task. Human attention was here gathered through click data that progressively uncovered a face, whereas model attention was obtained using three different popular techniques from explainable AI: CAM, GradCAM and Extremal Perturbation. In both cases, performance was gathered as percent correct. For this task, we found that humans outperformed machines quite significantly. In terms of attention patterns, we found that Extremal Perturbation had the best overall fit with the human attention map during the task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.