This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate variables improved the model's ability to account for horizontal photovoltaic power variation by 3%. Although adding Köppen-Geiger variables provided added value when modeling the training dataset, these variables were less effective in predicting the validation dataset. From the analysis, the ideal Köppen-Geiger region was determined to be a warm temperate main classification, a fully humid precipitation classification and a warm summer temperature classification. This region possessed a 30% greater average power production than the mean value of the base climate classification. We found that the cost-effectiveness of a photovoltaic array depends on Köppen-Geiger climate regions, in addition to weather characteristics and the orientation of the array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.