The kinetics of ribonucleic acid (RNA) and protein synthesis in rifampicin-inhibited normal and ethylenediaminetetraacetic acid (EDTA)-treated Escherichia coli was measured. Approximately 200-fold higher external concentrations of rifampicin were needed to produce a level of inhibition in normal cells comparable to that observed in EDTA-treated cells. The rates of RNA and protein synthesis in both kinds of cells decreased exponentially, after an initial lag phase, at all rifampicin concentrations tested. The lag phase was longer and the final exponential
Phage mutants of T4 have been isolated which can multiply only on
Escherichia coli
strains which contain a missense suppressor which is known to cause the substitution of glycine for arginine in response to the AGA codon. Mutations producing the suppressible phenotype were mapped and shown to occur in six different phage cistrons. Two of the cistrons were concerned with deoxyribonucleic acid synthesis, two were concerned with phage structural components, and two were concerned with functions required for growth in
E. coli
K-12 but not in
E. coli
B. The burst size of the different phage mutants grown on strains carrying the same suppressor was dependent upon the efficiency of suppression, which in turn is known to be dependent upon the glycyl-transfer ribonucleic acid synthetase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.