This paper proposes some exponential ratio type estimators of population mean under the situations when certain observations for some sampling units are missing. These missing observations may be for either auxiliary variable or study variable. The biases and mean square errors of the proposed estimators have been derived, up to the first order of approximation. The proposed estimators are compared theoretically with that of the existing ratio type estimators defined by [1]. It has been found that the proposed exponential ratio type estimators perform better than the mean per unit estimator even for the low positive correlation between study variable and auxiliary variable. Moreover, we obtained the conditions for which our proposed estimators are better than the corresponding ratio type estimators of [1]. To verify the theoretical results obtained, a simulation study is carried out finally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.