The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for highfidelity chromosome transmission during cell division. In budding yeast, Sgt1, together with Skp1, is required for assembly of the core kinetochore complex (CBF3) via Ctf13 activation. Formation of the active Ctf13-Skp1 complex also requires Hsp90, a molecular chaperone. We have found that Sgt1 interacts with Hsp90 in yeast. We also have determined that Skp1 and Hsc82 (a yeast Hsp90 protein) bind to the N-terminal region of Sgt1 that contains tetratricopeptide repeat motifs. Results of sequence and phenotypic analyses of sgt1 mutants strongly suggest that the N-terminal region containing the Hsc82-binding and Skp1-binding domains of Sgt1 is important for the kinetochore function of Sgt1. We found that Hsp90's binding to Sgt1 stimulates the binding of Sgt1 to Skp1 and that Sgt1 and Hsp90 stimulate the binding of Skp1 to Ctf13, the F-box core kinetochore protein. Our results strongly suggest that Sgt1 and Hsp90 function in assembling CBF3 by activating Skp1 and Ctf13.The centromere is essential for chromosome inheritance and requires DNA sequence elements and structural and regulatory proteins (the structural protein complex is called the kinetochore) for its activity and coordination within the cell cycle. In budding yeast (Saccharomyces cerevisiae), the kinetochore consists of more than 30 different proteins, and several of these proteins are conserved in mammals (21). The budding yeast centromere DNA is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (8, 13). CDEIII (25 bp) is essential for centromere function (12) and was the site shown to be bound by CBF3, a protein complex that contains the major proteins p110 (encoded by NDC10/ CTF14/CBF2), p64 (encoded by CEP3/CBF3b), p58 (encoded by CTF13) (4,5,11,17,23,24,37,39), and Skp1 (4, 37). All four are essential for viability, and mutations in any one abolish the CDEIII-binding activity of CBF3 (18,36). No known kinetochore protein, except for CDEI-binding Cbf1, can localize to kinetochores when the CBF3 complex is disrupted. Therefore, the CBF3 complex is the fundamental structure of the kinetochore, and the mechanism of CBF3 assembly is of great interest.SGT1 was isolated as a dosage suppressor of skp1-4, a kinetochore-defective mutant (22). By activating Ctf13, Sgt1 and Skp1 are required for assembly of the CBF3 complex (22). However, the mechanism of activation is not well characterized. Stemmann et al. showed that formation of the active Ctf13-Skp1 complex requires Hsp90, a molecular chaperone (38). Sgt1 has highly conserved tetratricopeptide repeat (TPR) (22) and CS (CHORD protein and Sgt1-specific) motifs-in other proteins these motifs are required for interaction with Hsp90 (2, 6). Here we report that molecular chaperones from the Hsp90 and Hsp70 families form a complex with Sgt1 in yeast. Our results strongly suggest that Hsp90's interaction with Sgt1 is required for kinetochore assembly in yeast. On the basis of our findi...
Cbln1 is essential for synapse integrity in cerebellum through assembly into complexes that bridge presynaptic β-neurexins (Nrxn) to postsynaptic GluRδ2. However, GluRδ2 is largely cerebellum-specific, yet Cbln1 and its little studied family members, Cbln2 and Cbln4, are expressed throughout brain. Therefore, we investigated whether additional proteins mediate Cbln family actions. Whereas Cbln1 and Cbln2 bound to GluRδ2 and Nrxns1–3, Cbln4 bound weakly or not at all, suggesting it has distinct binding partners. In a candidate receptor-screening assay, Cbln4 (but not Cbln1 or Cbln2) bound selectively to the netrin receptor, DCC (deleted in colorectal cancer) in a netrin-displaceable fashion. To determine whether Cbln4 had a netrin-like function, Cbln4-null mice were generated. Cbln4-null mice did not phenocopy netrin-null mice. Cbln1 and Cbln4 were likely co-localized in neurons thought to be responsible for synaptic changes in striatum of Cbln1-null mice. Furthermore, complexes containing Cbln1 and Cbln4 had greatly reduced affinity to DCC but increased affinity to Nrxns, suggesting a functional interaction. However, Cbln4-null mice lacked the striatal synaptic changes seen in Cbln1-null mice. Thus Cbln family members interact with multiple receptors/signaling pathways in a subunit composition-dependent manner and have independent functions with Cbln4 potentially involved in the less-well characterized role of netrin/DCC in adult brain.
The spindle checkpoint transiently prevents cell cycle progression of cells that have incurred errors or failed to complete steps during mitosis, including those involving kinetochore function. The molecular nature of the primary signal transmitted from defective kinetochores and how it is detected by the spindle checkpoint are unknown. We report biochemical evidence that Bub1, a component of the spindle checkpoint, associates with centromere (CEN) DNA via Skp1, a core kinetochore component in budding yeast. The Skp1's interaction with Bub1 is required for the mitotic delay induced by kinetochore tension defects, but not for the arrest induced by spindle depolymerization, kinetochore assembly defects, or Mps1 overexpression. We propose that the Skp1-Bub1 interaction is important for transmitting a signal to the spindle checkpoint pathway when insufficient tension is present at kinetochores.
The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1 and Hsp90 help assemble the core kinetochore complex CBF3 by activating the CBF3 components Skp1 and Ctf13. In this study, we show that Sgt1 forms homodimers by performing in vitro and in vivo immunoprecipitation and analytical ultracentrifugation analyses. Analyses of the dimerization of Sgt1 deletion proteins showed that the Skp1-binding domain (amino acids 1-211) contains the Sgt1 homodimerization domain. Also, the Sgt1 mutant proteins that were unable to dimerize also did not bind Skp1, suggesting that Sgt1 dimerization is important for Sgt1-Skp1 binding. Restoring dimerization activity of a dimerization-deficient sgt1 mutant (sgt1-L31P) by using the CENP-B (centromere protein-B) dimerization domain suppressed the temperature sensitivity, the benomyl sensitivity, and the chromosome missegregation phenotype of sgt1-L31P. These results strongly suggest that Sgt1 dimerization is required for kinetochore assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.