Inflammation initiates tendon healing and then normally resolves more or less completely. Unresolved inflammation might disturb the remodeling process. We hypothesized that suppression of inflammation during the early remodeling phase by systemic dexamethasone treatment can improve healing. 36 rats underwent Achilles tendon transection and were randomized to dexamethasone or saline on days 0–4 after surgery (early inflammatory phase), and euthanasia day 7. Another 54 rats received injections days 5–9 (early remodeling phase) and were euthanized day 12 for mechanical, histological and flow cytometric evaluation. Dexamethasone treatment days 0–4 reduced the cross-sectional area, peak force and stiffness by day 7 to less than half (p < 0.001 for all), while material properties (peak stress and elastic modulus) were not significantly affected. In contrast, dexamethasone treatment days 5–9 increased peak force by 39% (p = 0.002) and stiffness by 58% (p < 0.001). The cross-sectional area was reduced by 42% (p < 0.001). Peak stress and elastic modulus were more than doubled (p < 0.001 for both). Semi-quantitative histology at day 12 showed that late dexamethasone treatment improved collagen alignment, and flow cytometry revealed reduced numbers of CD8a+ cytotoxic T cells in the tendon callus. These results suggest that downregulation of lingering inflammation during the early remodeling phase can improve healing.
Loading influences tendon healing, and so does inflammation. We hypothesized that the two are connected. 48 rats underwent Achilles tendon transection. Half of the rats received Botox injections into calf muscles to reduce mechanical loading. Cells from the regenerating tissue were analyzed by flow cytometry. In the loaded group, the regenerating tissue contained 83% leukocytes (CD45+) day 1, and 23% day 10. The M1/M2 macrophage ratio (CCR7/CD206) peaked at day 3, while T helper (CD3+CD4+) and Treg cells (CD25+ Foxp3+) increased over time. With Botox, markers associated with down-regulation of inflammation were more common day 5 (CD163, CD206, CD25, Foxp3), and M1 or M2 macrophages and Treg cells were virtually absent day 10, while still present with full loading. The primary variable, CCR7/CD206 ratio day 5, was higher with full loading (p = 0.001) and the Treg cell fraction was lower (p < 0.001). Free cage activity loading is known to increase size and strength of the tendon in this model compared to Botox. Loading now appeared to delay the switch to an M2 type of inflammation with more Treg cells. It seems a prolonged M1 phase due to loading might make the tendon regenerate bigger.
BackgroundMechanical loading stimulates Achilles tendon healing. However, various degrees of loading appear to have different effects on the mechanical properties of the healing tendon, and strong loading might create microdamage in the tissue. This suggests that different mechanisms might be activated depending on the magnitude of loading. The aim of this study was to investigate these mechanisms further.MethodsFemale rats had their right Achilles tendon cut transversely and divided into three groups: 1) unloading (calf muscle paralysis by Botox injections, combined with joint fixation by a steel-orthosis), 2) mild loading (Botox only), 3) strong loading (free cage activity). Gene expression was analyzed by PCR, 5 days post-injury, and mechanical testing 8 days post-injury. The occurrence of microdamage was analyzed 3, 5, or 14 days post-injury, by measuring leakage of injected fluorescence-labelled albumin in the healing tendon tissue.ResultsPeak force, peak stress, and elastic modulus of the healing tendons gradually improved with increased loading as well as the expression of extracellular matrix genes. In contrast, only strong loading increased transverse area and affected inflammation genes. Strong loading led to higher fluorescence (as a sign of microdamage) compared to mild loading at 3 and 5 days post-injury, but not at 14 days.DiscussionOur results show that strong loading improves both the quality and quantity of the healing tendon, while mild loading only improves the quality. Strong loading also induces microdamage and alters the inflammatory response. This suggests that mild loading exert its effect via mechanotransduction mechanisms, while strong loading exert its effect both via mechanotransduction and the creation of microdamage.ConclusionIn conclusion, mild loading is enough to increase the quality of the healing tendon without inducing microdamage and alter the inflammation in the tissue. This supports the general conception that early mobilization of a ruptured tendon in patients is advantageous.
Tendon function and homeostasis rely on external loading. This study investigates the biological mechanisms behind tendon biomechanical function and how the mechanical performance is affected by reduced daily loading. The Achilles tendons of 16 weeks old female Sprague Dawley rats (n = 40) were unloaded for 5 weeks by inducing muscle paralysis with botulinum toxin injections in the right gastrocnemius and soleus muscles. The contralateral side was used as control. After harvest, the tendons underwent biomechanical testing to assess viscoelasticity (n = 30 rats) and small angle X-ray scattering to determine the structural properties of the collagen fibrils (n = 10 rats). Fourier transform infrared spectroscopy and histological staining (n = 10 rats) were performed to investigate the collagen and proteoglycan content. The results show that the stiffness increased in unloaded tendons, together with an increased collagen content. Creep and axial alignment of the collagen fibers were reduced. Stress-relaxation increased whereas hysteresis was reduced in response to unloading with botox treatment. Our findings indicate that altered matrix deposition relies on mechanical loading to reorganize the newly formed tissue, without which the viscoelastic behavior is impaired. The results demonstrate that reduced daily loading deprives tendons of their viscoelastic properties, which could increase the risk of injury.
Mechanical loading affects tendon healing and recovery. However, our understanding about how physical loading affects recovery of viscoelastic functions, collagen production and tissue organisation is limited. The objective of this study was to investigate how different magnitudes of loading affects biomechanical and collagen properties of healing Achilles tendons over time. Achilles tendon from female Sprague Dawley rats were cut transversely and divided into two groups; normal loading (control) and reduced loading by Botox (unloading). The rats were sacrificed at 1, 2- and 4-weeks post-injury and mechanical testing (creep test and load to failure), small angle x-ray scattering (SAXS) and histological analysis were performed. The effect of unloading was primarily seen at the early time points, with inferior mechanical and collagen properties (SAXS), and reduced histological maturation of the tissue in unloaded compared to loaded tendons. However, by 4 weeks no differences remained. SAXS and histology revealed heterogeneous tissue maturation with more mature tissue at the peripheral region compared to the center of the callus. Thus, mechanical loading advances Achilles tendon biomechanical and collagen properties earlier compared to unloaded tendons, and the spatial variation in tissue maturation and collagen organization across the callus suggests important regional (mechano-) biological activities that require more investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.