The structural features of quinone ligands are diagnostic of charge. The o-benzoquinone, radical semiquinonate, and catecholate electronic forms have C-O bond lengths and a pattern of ring C-C bond lengths that point to a specific mode of coordination. This correlation between ligand charge and structure has been extended to iminoquinone and iminothioquinone ligands, giving a charge-localized view of electronic structure for complexes of redox-active metal ions. The radical semiquinonate form of these ligands has been found to be a surprisingly common mode of coordination; however, the paramagnetic character of the radical ligand is often obscured in complexes containing paramagnetic metal ions. In this report, diamagnetic iminosemiquinonate (isq) and iminothiosemiquinonate (itsq) complexes of ls-d(5) Ru(III) with related complexes of osmium are reported. With osmium, the Os(IV)-amidophenolate (ap) redox isomer is formed. Electrochemical and spectral properties are described for Ru(PPh(3))(2)(isq)Cl(2), Ru(PPh(3))(2)(itsq)Cl(2), Os(PPh(3))(2)(ap)Br(2), Os(PPh(3))(2)(atp)Br(2), and Os(PPh(3))(2)(ap)H(2). Crystallographic characterization of Ru(PPh(3))(2)(isq)Cl(2), Ru(PPh(3))(2)(itsq)Cl(2), and Os(PPh(3))(2)(ap)H(2) was used to assign charge distributions.
Cyclometalated rhodium(III) and iridium(III) complexes (1–4) of two Schiff base ligands L1 and L2 with the general formula [M(ppy)2(Ln)]Cl {M = Rh, Ir; ppy = 2-phenylpyridine; n = 1, 2; L = Schiff base ligand} have been synthesized. The new ligands and the complexes have been characterized with spectroscopic techniques. Electrochemistry of the complexes revealed anodic behavior, corresponding to an M(III) to M(IV) oxidation. The X-ray crystal structures of complexes 2 and 4 have also been determined to interpret the coordination behavior of the complexes. Photophysical study shows that all the complexes display fluorescence at room temperature with quantum yield of about 3 × 10–2 to 5 × 10−2. The electronic absorption spectra of all the complexes fit well with the computational studies. Cellular imaging studies were done with the newly synthesized complexes. To the best of our knowledge, this is the first report of organometallic complexes of rhodium(III) and iridium(III) with Schiff base ligands explored for cellular imaging. Emphasis of this work lies on the structural features, photophysical behavior, cellular uptake and imaging of the fluorescent transition metal complexes.
Light-harvesting features of cyclometalated complexes of Ir(III) and Rh(III) contribute toward photoinduced electron and energy transfer for solar energy conversion and photocatalysis. Here we report four cyclometalated complexes of Rh and Ir among which one is heterometallic. These complexes, on interaction with fluorescent carbon nanoparticles (CNPs) in acetone medium, form molecular composites through hydrophobic interaction in the ground state followed by photoinduced electron transfer (PET). Quenching of CNP fluorescence and electrochemical measurements indicate occurrence of electron injection from the complexes to the CNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.