Speech-to-speech translation is a challenging problem, due to poor sentence planning typically associated with spontaneous speech, as well as errors caused by automatic speech recognition. Based upon a statistically trained speech translation system, in this study, we try to investigate methodologies and metrics employed to assess the (speech-to-speech) way in translation systems. The speech translation is performed incrementally based on generation of partial hypotheses from speech recognition. Speech-input translation can be properly approached as a pattern recognition problem by means of statistical alignment models and stochastic finite-state transducers. Under this general framework, some specific models are presented. One of the features of such models is their capability of automatically learning from training examples. The speech translation system consists of three modules: automatic speech recognition, machine translation and text to speech synthesis. Many procedures for incorporation of speech recognition and machine translation have been projected. In this research, we want explore methodologies and metrics employed to assess the (speech-to-speech) way in translation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.