Background Dental caries, also known as tooth decay, is a widespread and long-standing condition that affects people of all ages. This ailment is caused by bacteria that attach themselves to teeth and break down sugars, creating acid that gradually wears away at the tooth structure. Tooth discoloration, pain, and sensitivity to hot or cold foods and drinks are common symptoms of tooth decay. Although this condition is prevalent among all age groups, it is especially prevalent in children with baby teeth. Early diagnosis of dental caries is critical to preventing further decay and avoiding costly tooth repairs. Currently, dentists employ a time-consuming and repetitive process of manually marking tooth lesions after conducting radiographic exams. However, with the rapid development of artificial intelligence in medical imaging research, there is a chance to improve the accuracy and efficiency of dental diagnosis. Methods This study introduces a data-driven model for accurately diagnosing dental decay through the use of Bitewing radiology images using convolutional neural networks. The dataset utilized in this research includes 713 patient images obtained from the Samin Maxillofacial Radiology Center located in Tehran, Iran. The images were captured between June 2020 and January 2022 and underwent processing via four distinct Convolutional Neural Networks. The images were resized to 100x100 and then divided into two groups: 70% (4219) for training and 30% (1813) for testing. The four networks employed in this study were AlexNet, ResNet50, VGG16, and VGG19. Results Among different well-known CNN architectures compared in this study, the VGG19 model was found to be the most accurate, with a 93.93% accuracy. Conclusion This promising result indicates the potential for developing an automatic AI-based dental caries diagnostic model from Bitewing images. It has the potential to serve patients or dentists as a mobile app or cloud-based diagnosis service (clinical decision support system).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.