The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic-environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales.
Protecting the future of forests in the United States and other countries depends in part on our ability to monitor and map forest health conditions in a timely fashion to facilitate management of emerging threats and disturbances over a multitude of spatial scales. Remote sensing data and technologies have contributed to our ability to meet these needs, but existing methods relying on supervised classification are often limited to specific areas by the availability of imagery or training data, as well as model transferability. Scaling up and operationalizing these methods for general broadscale monitoring and mapping may be promoted by using simple models that are easily trained and projected across space and time with widely available imagery. Here, we describe a new model that classifies high resolution (~1 m2) 3-band red, green, blue (RGB) imagery from a single point in time into one of four color classes corresponding to tree crown condition or health: green healthy crowns, red damaged or dying crowns, gray damaged or dead crowns, and shadowed crowns where the condition status is unknown. These Tree Crown Health (TCH) models trained on data from the United States (US) Department of Agriculture, National Agriculture Imagery Program (NAIP), for all 48 States in the contiguous US and spanning years 2012 to 2019, exhibited high measures of model performance and transferability when evaluated using randomly withheld testing data (n = 122 NAIP state x year combinations; median overall accuracy 0.89–0.90; median Kappa 0.85–0.86). We present examples of how TCH models can detect and map individual tree mortality resulting from a variety of nationally significant native and invasive forest insects and diseases in the US. We conclude with discussion of opportunities and challenges for extending and implementing TCH models in support of broadscale monitoring and mapping of forest health.
Remote sensing technology has been used widely in mapping forest and wetland communities, primarily with moderate spatial resolution imagery and traditional classification techniques. The success of these mapping efforts varies widely. The natural communities of the Laurentian Mixed Forest are an important component of Upper Great Lakes ecosystems. Mapping and monitoring these communities using high spatial resolution imagery benefits resource management, conservation and restoration efforts. This study developed a robust classification approach to delineate natural habitat communities utilizing multispectral high-resolution (60 cm) National Agriculture Imagery Program (NAIP) imagery data. For accurate training set delineation, NAIP imagery, soils data and spectral enhancement techniques such as principal component analysis (PCA) and independent component analysis (ICA) were integrated. The study evaluated the importance of biogeophysical parameters such as topography, soil characteristics and gray level co-occurrence matrix (GLCM) textures, together with the normalized difference vegetation index (NDVI) and NAIP water index (WINAIP) spectral indices, using the joint mutual information maximization (JMIM) feature selection method and various machine learning algorithms (MLAs) to accurately map the natural habitat communities. Individual habitat community classification user’s accuracies (UA) ranged from 60 to 100%. An overall accuracy (OA) of 79.45% (kappa coefficient (k): 0.75) with random forest (RF) and an OA of 75.85% (k: 0.70) with support vector machine (SVM) were achieved. The analysis showed that the use of the biogeophysical ancillary data layers was critical to improve interclass separation and classification accuracy. Utilizing widely available free high-resolution NAIP imagery coupled with an integrated classification approach using MLAs, fine-scale natural habitat communities were successfully delineated in a spatially and spectrally complex Laurentian Mixed Forest environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.