Emerging nanoscale applications in energy, electronics, optics, and medicine can exhibit enhanced performance by incorporating nanoshaped structures (nanoshape structures here are defined as shapes enabled by sharp corners with radius of curvature < 5 nm). Nanoshaped fabrication at high-throughput is well beyond the capabilities of advanced optical lithography. Although the highest-resolution e-beams and large-area e-beams have a resolution limit of 5 and 18 nm half-pitch lines or 20 nm half-pitch holes, respectively, their low throughput necessitates finding other fabrication techniques. By using nanoimprint lithography followed by metal-assisted chemical etching, diamond-like nanoshapes with ~3 nm radius corners and 100 nm half-pitch over large areas have been previously demonstrated to improve the nanowire capacitor performance (by ~90%). In future dynamic random-access memory (DRAM) nodes (with DRAM being an exemplar CMOS application), the implementation of nanowire capacitors scaled to <15 nm half-pitch is required. To scale nanoshape imprint lithography down to these half-pitch values, the previously established atomistic simulation framework indicates that the current imprint resist materials are unable to retain the nanoshape structures needed for DRAM capacitors. In this study, the previous simulation framework is extended to study improved shape retention by varying the resist formulations and by introducing novel bridge structures in nanoshape imprinting. This simulation study has demonstrated viable approaches to sub-10 nm nanoshaped imprinting with good shape retention, which are matched by experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.